
Optimization Modulo Integer Linear-Exponential Programs

S Hitarth1, Alessio Mansutti2, and Guruprerana Shabadi3

1Hong Kong University of Science and Technology, Hong Kong
2IMDEA Software Institute, Spain
3University of Pennsylvania, USA

Abstract

This paper presents the first study of the complexity of the optimization problem for integer
linear-exponential programs which extend classical integer linear programs with the exponential
function x 7→ 2x and the remainder function (x, y) 7→ (x mod 2y). The problem of deciding
if such a program has a solution was recently shown to be NP-complete in [Chistikov et al.,
ICALP’24]. The optimization problem instead asks for a solution that maximizes (or minimizes)
a linear-exponential objective function, subject to the constraints of an integer linear-exponential
program. We establish the following results:

• If an optimal solution exists, then one of them can be succinctly represented as an integer
linear-exponential straight-line program (ILESLP): an arithmetic circuit whose gates al-
ways output an integer value (by construction) and implement the operations of addition,
exponentiation, and multiplication by rational numbers.

• There is an algorithm that runs in polynomial time, given access to an integer factoring
oracle, which determines whether an ILESLP encodes a solution to an integer linear-
exponential program. This algorithm can also be used to compare the values taken by the
objective function on two given solutions.

Building on these results, we place the optimization problem for integer linear-exponential pro-
grams within an extension of the optimization class NPO that lies within FNPNP. In essence,
this extension forgoes determining the optimal solution via binary search.

(Page 12 includes a table of contents.)

Acknowledgements. We would like to thank Dmitry Chistikov for recommending the use of finite
differences to simplify certain arguments in the proof of Proposition 3, Dario Fiore for pointing us
to the work of Rivest, Shamir and Wagner on time-lock puzzles [RSW96], and Christoph Haase
for pointing us to the work of Myasnikov, Ushakov and Won [MUW12]. This work began while
S Hitarth and Guruprerana Shabadi were interns in IMDEA Software Institute.

1

Section 1: Introduction

1 Introduction

Integer Linear Programming (ILP), the problem of determining an optimal (maximal or minimal)
value of a multivariate linear polynomial evaluated over the integer solutions to a system of linear
inequalities A·x ≤ b, offers one of the most versatile frameworks for solving computational problems
in operations research and computer science. Summarizing the preface of “50 Years of Integer
Programming 1958–2008” [JLN+10], over decades, a rich collection of methods for solving ILP
have been developed, such as cutting-plane methods, branch-and-bound algorithms, and techniques
from polyhedral geometry. These developments have not only deepened our understanding of the
structure of the problem and its complexity, but also have been translated into powerful solvers
(e.g., SCIP, CPLEX, Gurobi) that can handle large-scale real-world instances very efficiently.

In this paper, we study the optimization problem of Integer Linear-Exponential Programming
(ILEP), which extends ILP with the exponential function x 7→ 2x and the remainder function
(x, y) 7→ (x mod 2y). An instance of ILEP is a maximization (or minimization) problem

maximize τ(x)
subject to ρi(x) ≤ 0 for each i ∈ {1, . . . , k}

ρi(x) = 0 for each i ∈ {k + 1, . . . ,m},

where x is a vector of variables over the non-negative integers N, and τ, ρ1, . . . , ρm are linear-
exponential terms of the form∑n

i=1

(
ai · xi + bi · 2xi +

∑n

j=1
ci,j · (xi mod 2xj)

)
+ d, (1)

in which all coefficients ai, bi, ci,j and the constant d are integers. The system of constraints defined
by the inequalities ρi(x) ≤ 0 and equalities ρi(x) = 0 is an integer linear-exponential program.

Example 1. To get a feel for this optimization problem, let us look at the instance

maximize τ(x, y) := 8x+ 4y − (2x + 2y)

subject to φ(x, y, z) := y ≤ 5

y ≤ 2x

2z ≤ 216y

z = 3 · x.
6

5

y

0 x

After projecting away the variable z, which is just a proxy for 3 ·x, the plot on the right shows a heat
map of the objective function τ over the feasible region defined by φ (we only consider non-negative
integer solutions). Visually, we see that any point in {3, 4} × {2, 3} is optimal.

Integer linear-exponential programming lacks two of the key properties that are central to ILP:

1. In ILP, it is a classical fact that if an optimal solution exists, then there is one whose bit size
is polynomially bounded by the bit size of the input [BT76,vzGS78]. This is not the case for
integer linear-exponential programs, where solutions may demand a non-elementary number
of bits when represented in binary: by setting x0 = 1 and writing a sequence of constraints of
the form xi+1 = 2xi , one can force xi to be equal to the tower of 2s of height i.

2

Section 1.1: Succinct encoding of optimal solutions

2. In ILP, whenever (optimal) solutions exist, at least one lies near the boundary of the feasible
region defined by the system of linear inequalities. (This fact is made more precise in Exam-
ple 2.) In ILEP, this geometric property no longer holds. Intuitively, this can already be seen
in the instance from Example 1, where all optimal solutions lie near the center of the feasible
region rather than near its boundary. We will revisit this observation in Example 3. Finding
optimal solutions despite this fact is a central difficulty addressed in the paper.

Although solutions to integer linear-exponential programs may require astronomically large bi-
nary representations, the complexity of the feasibility problem for ILEP, that is, the problem of
checking if an instance has a (not necessarily optimal) solution, is comparable to that of ILP. In-
deed, this problem was recently shown to be NP-complete by Chistikov, Mansutti and Starchak
in [CMS24], who developed a non-deterministic polynomial-time procedure based on quantifier
elimination. This implies that a short and polytime-time checkable certificate exists for at least
one solution of a feasible system1. In contrast, it is not known whether optimal solutions can be
represented efficiently, namely, by polynomial-size objects that can be verified as valid solutions in
polynomial time. This leads to the central question we explore in this paper:

Are there efficient representations for the optimal solutions to ILEP?

As this introduction hopes to convey, answering this question yields a distinctive perspective on
integer programming. The algebraic techniques we employ in this paper are, as far as we know, non-
standard in the context of optimization, and they appear to be applicable to other extensions of ILP,
such as quadratic [PDM17,Lok15,EGKO19] and parametric versions of integer programming [She18,
BGW17]. Furthermore, the representation we consider is quite natural and can be viewed as an
extension of the class of power circuits introduced by Myasnikov, Ushakov and Won in [MUW12],
which played a crucial role in resolving several questions in algorithmic group theory, most notably
in establishing that the word problem for the one-relator Baumslag group lies in P [MUW11]. To our
knowledge, this is the first application of power circuits within the context of integer programming.

1.1 Succinct encoding of optimal solutions

To address the central question posed above, we introduce a new representation of solutions called
Integer Linear-Exponential Straight-Line Programs. Let us begin by defining a Linear-Exponential
Straight-Line Program (LESLP) as a sequence σ := (x0 ← ρ0, . . . , xn ← ρn) of variable assignments
such that each expression ρi (i ∈ [0..n]) has one of the following forms: 0, xj + xk, 2xj , or scaling
expressions a · xj , where the indices j, k ∈ [0..i − 1] refer to previous assignments in the program,
and a ∈ Q. The bit size of σ is defined as the number of symbols required to write it down, which
includes encoding the indices 0, . . . , n in unary, and the rational coefficients in scaling expressions
as pairs of integers m

g with g ≥ 1, encoded in binary.
We define JσK : {x0, . . . , xn} → R as the map that assigns to each variable xi the value that the

expression ρi takes when evaluated using standard arithmetic. Note that x0 always takes the value
0. We call σ an Integer Linear-Exponential Straight-Line Program (ILESLP) if all of its variables
evaluate to integers. For example, the following LESLP σ

x0 ← 0, x1 ← 2x0 , x2 ← −1 · x1, x3 ← 2x2 , x4 ← 2x3 ,

is not an ILESLP as JσK (x3) = 1
2 and JσK (x4) =

√
2.

1While these certificates are not discussed explicitly in [CMS24], they can be extracted from the accepting paths
of the non-deterministic procedure.

3

Section 1.2: Recognizing ILESLPs and when they encode solutions

Consider an instance (τ, φ) of ILEP, where τ is the objective function (to be maximized or
minimized) and φ is an integer linear-exponential program. An ILESLP σ is a solution to (τ, φ)
whenever (i) the set {x0, . . . , xn} contains (at least) all the variables of τ and φ, and (ii) the variable
assignment JσK satisfies all constraints in φ. We now state our main theorem:

Theorem 1. If an instance of integer linear-exponential programming has an optimal solution, then
it has one representable with a polynomial-size ILESLP.

We defer giving an overview of the proof of Theorem 1 to Section 1.4. Let us stress that, for the
sake of a simpler exposition, we solely focus on integer linear-exponential programs with variables
ranging over N. Our results can however be easily adapted to variables ranging over Z by similar
arguments as the ones given in [CMS24, Sec. 8] for the feasibility problem. That being said, the
variables in ILESLPs must still range over Z, and auxiliary variables not occurring in the instance
of ILEP are necessary to succinctly encode a solution. Consider for example the linear-exponential
program φ(x, y, z) := x = k ∧ y = 2x ∧ z = 2y − 1, where k is a positive integer encoded in binary.
A (short) ILESLP σ representing the only solution to φ is

x0 ← 0, x1 ← 2x0 , x← k · x1, y ← 2x, x2 ← 2y, x3 ← −1 · x1, z ← x2 + x3,

where x0, . . . , x3 are auxiliary variables, and JσK (x3) is negative. Intuitively, it is not possible to
have a short ILESLP in which all variables evaluate to non-negative integers, because the binary
expansion of 22k − 1 has doubly exponentially many 1s with respect to the bit size of φ.

Power circuits. In [MUW12], Myasnikov, Ushakov and Won consider a class of straight-line
programs, which they refer to as (constant) power circuits, that feature the operations x+ y, x− y
and x ·2y, and the constant 1. In the paper, the authors develop several polynomial-time algorithms
for manipulating such circuits. The main one is a normalization procedure that, among other things,
reduces the operation x · 2y to the simpler exponential function 2y. Given that power circuits are
semantically restricted to integer-valued variables, ILESLPs thus represent a natural generalization
that introduces scaling by rational constants via the expressions a · x, with a ∈ Q. The need for
rational coefficients is, in fact, already discussed in [MUW12, Section 9.1], as we explain next.

Consider an integer linear-exponential program φ whose constraints imply 3 · x = 22y − 1 and
require y to be a positive integer of exponential magnitude in the size of φ. To see why any
polynomial-size ILESLP σ encoding a solution to φ must have a scaling expression with a non-
integer coefficient, observe that for every k ≥ 1, the number 22k−1

3 is a positive integer, and moreover
its binary representation is 1(01)k−1. Since JσK (y) is large, the binary expansion of JσK (x) must
then alternate between 0s and 1s exponentially many times relative to the size of φ. However, one
can show that an ILESLP with only integer coefficients (alternatively, a power circuit) can only
encode numbers whose binary expansion alternates between 0s and 1s at most polynomially many
times in the bit size of the ILESLP. Therefore, σ must either feature some non-integer coefficient,
or be exponentially larger than φ.

1.2 Recognizing ILESLPs and when they encode solutions

Theorem 1 indicates that the optimization problems of ILP and ILEP are close: while integers
must be encoded more succinctly in the case of ILEP, both problems admit short representations
for optimal solutions. The first difference arises when we consider the problems of recognizing the
set of ILESLPs, and of checking whether an ILESLP is a solution to an instance of ILEP.

4

Section 1.2: Recognizing ILESLPs and when they encode solutions

Consider a LESLP σ := (x0 ← ρ0, . . . , xn ← ρn). The snippet of code below decides whether σ
is an ILESLP by testing whether JσK (xi) ∈ Z iteratively on i from 1 to n. Such a test comes for free
for additions: if JσK (xj) and JσK (xk) are integers, and σ features xi ← xj + xk, then JσK (xi) ∈ Z.
1: for i = 1 to n do ▷ during the ith iteration, we already know that x0, . . . , xi−1 are integers

▷ in the next two lines, “assertφ” stands for “if¬φ then return false”
2: if ρi is of the form 2x then assert JσK (x) ≥ 0 ▷ recall: JσK (x) ∈ Z
3: if ρi is of the form m

g · x then assert g
gcd(m,g) divides JσK (x)

4: return true
Given an LESLP σ := (x0 ← ρ0, . . . , xn ← ρn), let us write JσK• as a shorthand for JσK (xn).

Lines 2 and 3 of the above code only verify properties of variables whose values were already
established to be integers in earlier iterations of the for loop. Therefore, the problem of checking if
an LESLP is an ILESLP reduces to deciding the following two properties of an input ILESLP σ:

NatILESLP: Is JσK• ≥ 0?

DivILESLP: Is JσK• divisible by g, for g ∈ N≥1 given in binary?

The problem NatILESLP is the “linear-exponential analogue” of the well-known PosSLP prob-
lem, which involves straight-line programs featuring assignments xi ← xj ·xk in place of exponentia-
tion, and whose complexity is still wide open [BJ24,BDJ24]. In contrast, the corresponding decision
problem for power circuits is known to be decidable in polynomial time [MUW12, Sec. 7.5]. We
show that this result carries over to the more general setting of ILESLPs:

Lemma 1. NatILESLP can be decided in polynomial time.

In [MUW12], one notable feature of the previously-mentioned normalization procedure for power
circuits is that it makes checking the sign trivial: once a circuit is in normal form, the sign of the
encoded number is immediately evident from the structure of the circuit. (Another key property is
that power circuits representing the same number have the same normal form.) While we believe
that a similar normal form exists for ILESLPs, in this paper we instead provide a direct procedure
for solving NatILESLP. Setting aside complexity considerations for now, the procedure originates
from a simple idea. Given an ILESLP (or power circuit) σ where JσK (z) = a · 2JσK(x) − b · 2JσK(y)

for three variables x, y, z and positive integers a, b, look at the distance k := |JσK (x)− JσK (y)|.
One possibility is for k to be at least c := ⌈log2(max(a, b))⌉: the sign of JσK (z) is then the sign of
the coefficient a or b corresponding to the larger variable among x and y. We can check k ≥ c by
opportunely modifying σ so as to be able to test JσK (x)−JσK (y)−c ≥ 0 and JσK (y)−JσK (x)−c ≥ 0
with two recursive calls to the algorithm for NatILESLP. If k < c instead, k is logarithmic in the
bit size of σ. We can then compute k: a naïve solution is to perform binary search on a suitable
interval, repeatedly invoking the algorithm for NatILESLP on a modified ILESLP. Then, JσK (z) has
the same sign as either a · 2k − b or a − b · 2k, depending on which of the two variables, x or y, is
larger. While our final polynomial-time procedure differs from this outline, the distinction between
“large distance” and “short distance” remains central.

Turning to the problem DivILESLP, we show that it can be decided in polynomial time when
having access to an integer factorization oracle. This is arguably the best we can hope for, as
solving DivILESLP in P (in fact, even in BPP) would refute the Sequential Squaring Assumption, a
well-known cryptographic assumption put forward by Rivest, Shamir and Wagner in [RSW96].2

2A proof of this hardness result is provided for completeness in Appendix A; see also [CJSS21] for a further
reference. It is worth noting that rational constants do not have any role in this proof: the problem is unlikely to be
in P even in the more restricted setting of power circuits.

5

Section 1.3: Comparing values of the objective function without computing them

Lemma 2. DivILESLP is in Pfactoring.

The main step in establishing Lemma 2 is showing that, even though JσK (x) can be astronom-
ically large, we can still compute JσK (x) mod ϕ(g) in polynomial time using the factoring oracle,
where ϕ stands for Euler’s totient function. This allows us to then efficiently compute 2JσK(x) mod g
using the exponentiation-by-squaring method [BW08, Ch. 1.4].

As per all Pfactoring algorithms, given an input ILESLP σ and g ∈ N≥1, there is a polynomial-
sized set of small primes that, when provided as an advice, enables running the algorithm deciding
DivILESLP in polynomial time, avoiding all calls to the factorization oracle. We will explicitly
construct this set in Section 8. Looking back at line 3 of the above snippet of code, note that the
algorithm deciding DivILESLP has to be invoked only on divisors of the denominators g appearing in
the rational coefficients of the LESLP σ. This allows us to define a common set P(σ) of polynomially-
many small primes that suffices to decide in polynomial time all instances of DivILESLP that are
relevant when determining if a LESLP is an ILESLP. From Lemmas 1 and 2, along with the fact
that primality testing is in P [AKS04], we then establish the following result:

Proposition 1. Given an LESLP σ and P(σ), one can decide in polynomial time if σ is an ILESLP.
In order words, the set U := {(σ,P(σ)) : σ is an ILESLP} is recognizable in polynomial time.

The set U in Proposition 1 represents the universe of all certificates for ILEP. Since P(σ) can
be encoded using polynomially many bits relative to the size of σ, Theorem 1 implies that any
instance of ILEP with an optimal solution has one representable by a polynomial-size element of U .
Proposition 1 highlights a nuanced distinction between ILP and ILEP: certificates for the latter
problem require some external objects (the sets P(σ)) which are introduced to achieve polynomial-
time recognizability of the certificates, but are not inherently required to encode solutions.

Let us now consider the problem of checking whether a given (σ,P(σ)) ∈ U is a solution to an
instance of ILEP. To verify if σ satisfies an inequality of the form

∑n
i=1

(
ai · xi + bi · 2xi

)
+ d ≤ 0,

we first check that JσK (xi) ≥ 0 for all i ∈ [1..n]; as solutions are over N. We then append new as-
signments to σ, to obtain an ILESLP σ′ such that Jσ′K• =

∑n
i=1

(
ai · JσK (xi) + bi · 2JσK(xi)

)
+ d− 1.

The ILESLP σ satisfies the inequality if and only if the algorithm for NatILESLP returns false when
applied to σ′. For the more general case of the linear-exponential terms from Equation (1), we must
also account for the expressions (xj mod 2xk) involving the remainder function. We show that these
expressions are unproblematic (Section 9): starting from (σ,P(σ)), we can compute in polynomial
time an ILESLP σ′′ such that Jσ′′K• = JσK (xj) mod 2JσK(xk). Consequently, after appropriately up-
dating the ILESLP, the verification proceeds similarly to the case without remainder functions. We
emphasize that computing σ′′ requires access either to P(σ) or to an integer factoring oracle.

Proposition 2. Checking whether (σ,P(σ)) ∈ U encodes a solution to an instance (τ, φ) of ILEP
can be done in polynomial time in the bit sizes of σ and φ.

1.3 Comparing values of the objective function without computing them

Continuing our comparison between ILP and ILEP, we need to address one last problem: the
evaluation of the objective function. In ILP, the objective function τ(x), being a linear term,
is trivial to evaluate: it suffices to perform a few additions and multiplications, and return the
resulting integer, which is guaranteed to be of polynomial bit size with respect to the bit size of
the solution and of τ . The property of τ being polynomial-time computable is a common feature of
all optimization problems belonging to the complexity class NPO from [AMC+99]. This property
implies that maximizing (or minimizing) τ subject to an integer linear program φ(x) can be achieved
through binary search over a suitable interval [a..b] ⊆ Z containing the optimal value of τ ; repeatedly

6

Section 1.4: Overview of the proof of Theorem 1

solving an instance of the feasibility problem of ILP at each step of the search. For example, the
first query checks whether φ(x) ∧ τ(x) ≥ b−a

2 is satisfiable, and updates the interval to [a..
⌊
b−a
2

⌋
]

or [
⌈
b−a
2

⌉
..b] accordingly to the answer. When a and b are encoded in binary, polynomially many

feasibility queries suffice to locate an optimal solution; that is, NPO ⊆ FPNP.
In ILEP there seems to be no easy way to perform binary search over the set of numbers encoded

by polynomial-size ILESLPs (Open problem 2 in Section 1.5 formalizes this issue). However, given
an instance (τ, φ) of ILEP, we can still compare the values of τ at two solutions s1 and s2, each
encoded as an ILESLP, in polynomial time relative to the sizes of τ , s1 and s2. This is a direct
consequence of the fact that NatILESLP is in P (Lemma 1): to perform the comparison τ(s1) ≤ τ(s2),
we construct an ILESLP σ such that JσK• = τ(s2)−τ(s1), and then use the algorithm for NatILESLP

to determine the sign of this difference.
As a way of summarizing our comparison between ILP and ILEP, we introduce an adequate

complexity class, which we denote by NPO-cmp. In this class, the requirement “the objective
function is computable in polynomial-time” of NPO is weakened to “comparisons between values
taken by the objective function can be performed in polynomial time”; see Section 10 for the formal
definition of NPO-cmp. This relaxation forgoes the ability to search for the optimum via binary
search; and so instead of an inclusion with FPNP, we have NPO-cmp ⊆ FNPNP. From the above
discussion, and Theorem 1 and Propositions 1 and 2, we obtain:

Corollary 1. The optimization problem for integer linear-exponential programs is in NPO-cmp.

Of course, whether NPO-cmp should be considered a “natural” complexity class is open for
debate and lies beyond the scope of this paper. Echoing Goldreich [Gol08, Chapter 2.1.1.1], un-
derstanding the true content of this class is challenging because, like NPO, it is defined solely in
terms of the “external behavior” (algorithmic properties) instead of the “internal structure” of its
problems. Nonetheless, at an intuitive level, NPO-cmp seems “natural” in the context of optimiza-
tion problems whose solutions must be encoded succinctly, and where it is therefore unreasonable
to require the objective function to produce, in polynomial time, an integer encoded in binary.

1.4 Overview of the proof of Theorem 1

To establish Theorem 1, the starting point is given by the non-deterministic polynomial-time algo-
rithm designed in [CMS24] for solving the feasibility problem for ILEP (we give an overview of this
procedure in Section 2). In a nutshell, this algorithm solves the linear integer-exponential program
by progressively obtaining linearly occurring variables, which are eliminated with a procedure that
combines Bareiss’s algorithm for Gaussian elimination [Bar68] with a quantifier elimination proce-
dure for Presburger arithmetic [Pre29] (that is, the first-order theory of the structure ⟨N; 0, 1,+,≤⟩).
This “variable elimination step” only preserves the equisatisfiability of the formula; consequently, in
the setting of optimization, the algorithm may miss all optimal solutions. We look closely at this
issue, and show that the variable elimination step can be strengthened to ensure that at least one
optimal solution is preserved (provided one exists). Furthermore, each non-deterministic branch of
execution can be associated with an ILESLP whose size is polynomial in the sizes of the interme-
diate formulae produced during the run. When the execution terminates successfully, this ILESLP
encodes the computed solution. Then, the final component of the proof involves analyzing the
running time of the algorithm.

Variable elimination. Without going into full-details, one can abstract the “variable elimination
step” we seek to define into the template given in Algorithm 1 (ElimVars). It describes a procedure

7

Section 1.4: Overview of the proof of Theorem 1

Algorithm 1 ElimVars: A template for variable elimination.
Input: x : variables; f : an objective function; φ : a system of constraints.
1: while some variable from x appears in f or φ do
2: (a · x = τ)← guess an element in TP(x, f, φ) ▷ guesses an equality with a ̸= 0
3: (f, φ)← Elim(f, φ, a · x = τ) ▷ subproblem in which x = τ

a

4: return (f, φ)

that, given in input a vector of variables x to be eliminated, an objective function f , and some system
of constraints φ, iteratively performs the following operations:

1. Guess an equality a · x = τ from a finite set TP(x, f, φ) (line 2), where a ∈ Z \ {0}, x is a
variable in x occurring in φ or f , and τ is an expression over variables in f or φ other than x.

2. Apply an elimination discipline Elim (line 3). This operator updates f and φ to a new
objective function and constraint system, representing the subproblem obtained by narrowing
the search space to only those solutions where x is set to τ

a .

Slightly overloading terminology from computer algebra, we refer to elements a·x = τ of TP(x, f, φ)
as test points, emphasizing that ElimVars tests the case where x is set to τ

a . The algorithm only
explores solutions corresponding to such tests. Hence, if too few test points are used, the algorithm
may fail to find any solution to some satisfiable formula, i.e., it might be incomplete. Even when it
is complete, it may still miss all optimal solutions, if none of them corresponds to some test point.
Given a specific class of objective functions and constraint systems, one can therefore ask: how
should the test points be chosen to ensure that the algorithm runs in non-deterministic polynomial
time and explores at least one optimal solution?

Example 2 (ILP with divisibility constraints). Consider the optimization problem:

maximize f(y) subject to φ(y) :=
(
A · y ≤ b ∧

∧k
i=1mi | τi(y)

)
, (2)

where f is a linear polynomial, A is an integer matrix, b is an integer vector, and each mi | τi
is a divisibility constraint featuring a non-zero divisor mi ∈ Z and a linear polynomial τi. Given
a, b ∈ Z, a | b is true whenever a is a divisor of b. From quantifier elimination procedures for
Presburger arithmetic (see, e.g., [Wei90]), we know that defining the (finite) set of test points as

TP(y, f, φ) :=


a · x = τ − s : the variable x appears in φ or f,

(a · x− τ) is either −x or a row of A · y − b,
a ̸= 0 and s ∈ [0.. |a| · lcm(m1, . . . ,mk)− 1]


ensures that a solution over Z is explored. In essence, this set shows that a solution can always be
found by shifting the hyperplanes describing the feasible region defined by φ or, when x appears only
in f , by shifting the constraint −x = 0. In fact, in Lemma 8 (Section 3) we will see that this set
also guarantees exploration of an optimal solution, due to the monotonicity of the linear objective f .

Given f , φ and an equality a · x = ρ from TP(y, f, φ), we can define Elim as the operator
that replaces x with τ

a in both f and φ (performing basic manipulations to preserve the integrality
of the coefficients in φ), and appends the divisibility constraint a | τ to φ. These updates mirror
those performed by quantifier elimination procedures for Presburger arithmetic. Complexity-wise,
this elimination discipline is suboptimal, as it causes the bit sizes of the integers in φ to grow
exponentially in the number of eliminated variables. The results in [CMS24] show how to fix this
issue by relying on Bareiss algorithm. We will rely on similar arguments in Section 5.

8

Section 1.4: Overview of the proof of Theorem 1

In the case of non-monotone objective functions, the instantiation of ElimVars given in the
above example fails to explore optimal solutions.

Example 3. Consider the optimization problem

maximize f(x, y) := 8x+ 4y − (2x + 2y)

subject to φ(x, y, z) := 0 ≤ x ≤ 6

0 ≤ y ≤ 5

6 x

5

y

0

In the figure, vertical and horizontal lines represent the test points in the set T := TP({x, y}, f, φ)
from Example 2. None intersect an optimal solution, and T is therefore insufficient to solve the
problem of maximizing a linear-exponential term subject to an integer linear program.

In order to instantiate ElimVars to the context of ILEP, we must consider a class of objective
functions represented as Linear-Exponential Arithmetic Circuits (LEACs). Informally, a LEAC C
is an ILESLP that includes some free variables y, that is, variables that appear in arithmetic
expressions but are not themselves assigned any expression within the straight-line program. For
a given output variable z in C, the function represented by C takes values for the free variables y
as input, evaluates all expressions in the circuit, and returns the integer corresponding to the
expression assigned to z. (LEACs are formally defined in Section 4.1; see Definition 2.) The
function f from Example 3 can be represented with a LEAC.

Exploring optimal solutions. Returning to Example 3, we can ensure an optimal solution is
explored by adding the equalities x = 3 and x = 4 to the set T . One way of interpreting this
addition is by looking at two subproblems: one where x ranges over [0..3], and another where it
ranges over [4..6]. Within each of these intervals, the function f is monotone in x as both x = 3 and
x = 4 are near a zero of the partial derivative ∂f

∂x = 8− ln(2) ·2x of f in x. Because of monotonicity,
each subproblem can be tackled using the test points from Example 2, and the union of the test
points of the two subproblems is exactly the set T ∪ {x = 3, x = 4}.

In essence, our instantiation of ElimVars for ILEP adapts the above observation to the setting
of LEACs. We show how to decompose the search space in such a way that the objective function
encoded by the LEAC exhibits a form of monotonicity within each region of the decomposition,
to then rely on the idea from Example 2 that, for monotone functions, an optimal solution must
occur near the boundary of the feasible region. We refer to these decompositions as monotone
decompositions. Since variables range over N instead of R, we use finite differences instead of
derivatives: for a function f(x,y) in 1 + d variables (in our case, a LEAC) and p ∈ N, the p-spaced
partial finite difference of f with respect to x, denoted ∆p

x[f], is the function f(x+ p,y)− f(x,y).
The function f is said to be (x, p)-monotone locally to a set S ⊆ N1+d if there is a sign ∼ ∈ {<,=, >}
such that, for every (u,v) ∈ S with (u+p,v) ∈ S, we have ∆p

x[f](u,v) ∼ 0. (Similarly to Example 2,
our instantiation of ElimVars adds divisibility constraints. The integer p in the finite difference
corresponds to the least common multiple of the divisors in these constraints.)

Example 4. Let f and φ be as in Example 3. The 1-spaced partial finite difference in x of f
is ∆1

x[f] = 8− 2x. This function is positive for x ≤ 2, zero at x = 3, and negative for x ≥ 4.
Accordingly, the monotone decomposition of the search space features three regions, given by the sets

9

Section 1.5: Open problems and future directions

of solutions to φ∧ (x ≤ 2), φ ∧ (x = 3), and φ∧ (x ≥ 4). The function f is (x, 1)-monotone locally
to each region, and we define the set TP({x, y}, f, φ) to include x = 2, x = 3 and x = 4.

Complexity. After defining the set of test points by relying on monotone decompositions, most of
the technical effort required to prove Theorem 1 is devoted to ensuring that no exponential blow-up
occurs during the procedure. (In fact, this effort starts when defining the monotone decompositions,
as doing so uncarefully would already cause such a blow-up; see the discussion on page 26.) As
already mentioned in Example 2, an important step in avoiding exponential blow-ups is the design
of an efficient elimination discipline, which we base on a variation of Bareiss algorithm. Once
the elimination discipline is in place, a careful complexity analysis, tracking several parameters of
both the integer linear-exponential programs and the LEACs, is required to show that the entire
procedure runs (non-deterministically) in polynomial time.

Remark 1. As noted at the beginning of page 3, the techniques in this paper also appear applicable
to quadratic and parametric versions of integer programming. In a nutshell, this is because it is
relatively simple to define monotone decompositions in those contexts.

1.5 Open problems and future directions

The results presented in this paper provide a positive answer to the question of whether optimal
solutions to ILEP admit efficient representations, and offer what we believe to be a first satisfactory
perspective on the computational differences between ILP and ILEP. Yet this perspective gives rise
to several open problems, some of the most interesting of which we outline below.

Among the problems related to the complexity of ILEP, a fundamental question is whether our
FNPNP upper bound can be improved to FPNP.

Open problem 1. Is the optimization problem for integer linear-exponential programs in FPNP?

Based on our discussion in Section 1.3, this problem can be settled with an algorithm for per-
forming binary search on a large set of ILESLPs. We formalize this objective in the following open
problem (here, #S stands for the cardinality of a set S):

Open problem 2. Let S be the set of all ILESLPs of size at most k. Is there an algorithm with
runtime polynomial in k that, given as input σ1, σ3 ∈ S, computes σ2 ∈ S such that the size of each of
the sets S1 := {σ : Jσ1K• ≤ JσK• ≤ Jσ2K•} and S2 := {σ : Jσ2K• ≤ JσK• ≤ Jσ3K•} is in Ω(#S1+#S2)?

Although missing a formal connection, the fact that DivILESLP is unlikely to lie in P (Appendix A)
suggests that the above open problem may need to be relaxed to also allow for algorithms that run
in polynomial time with access to an integer factoring oracle. For example, this would apply to
algorithms that first construct an LESLP σ2 of size at most k, to then check that σ2 is an ILESLP.
Efforts to address Open problem 2 might begin by focusing on non-trivial subsets of S. For instance,
one could consider the problem of performing binary search on power circuits of size at most k, hence
avoiding rational constants. A closely related open problem is the successor problem: given σ1 ∈ S,
find (if it exists) σ2 ∈ S satisfying Jσ2K• = min{JσK• : Jσ1K• < JσK•}.

The connection between DivILESLP and the Sequential Squaring Assumption (Appendix A)
suggests that it is unlikely that integer linear-exponential programs with at least three variables
can be solved in polynomial time. In contrast, ILP can be solved in polynomial time for any fixed
number of variables [Len83]. Can we say more about the complexity of ILEP in fixed dimension?

Open problem 3. When the number of variables is fixed, can integer linear-exponential program-
ming be solved in polynomial time with access to an integer factoring oracle?

10

Section 1.6: ILEP in context

1.6 ILEP in context

For the interested reader, we conclude this overview by providing a broader perspective on ILEP.
A notable trend in computer science sees integer linear programming being used not only in its
classical applications (such as scheduling, logistics, and finance) but also in automated reasoning
and program analysis. This is due in large part to the advances in Satisfiability Modulo Theory
(SMT) solvers [BT18]. These solvers bootstrap general (semi-)decision procedures for full first-
order logical theories starting from tools that solve the so-called “conjunctive fragment” of these
theories. For instance, ILP is the conjunctive fragment of Presburger arithmetic, and SMT solvers
rely on tools for ILP to decide the feasibility problem of Presburger arithmetic [KBT14].

One challenge in applying Presburger arithmetic (and thus ILP) to areas such as program
analysis stems from limitations in its expressive power. The simplest example of this comes from
bit-vector analysis. Let us see a bit-vector b of length n as the non-negative integer

∑n
i=0 b[i] · 2i,

where b[i] denotes the ith entry of b. Presburger arithmetic lacks the ability to express even the
simple two-variables formula bit(b, y) asserting that b[y] = 1, i.e., that the bit in position y is set.
Owing to these limitations, recent research focuses on extending Presburger arithmetic and ILP
with additional predicates and functions while retaining decidability [KLN+25, BH24, DHMP24].
A prominent extension is given by Semenov arithmetic [Sem84], which adds to Presburger arithmetic
the exponential function x 7→ 2x. Although it still cannot express the formula bit(b, y), Semenov
arithmetic can reason about bit sizes: the formula 2y ≤ x∧x < 2 · 2y binds y to be the bit size of x.
Because of this, Semenov arithmetic has recently found applications for reasoning about program
(non)termination [FG24].

Further extending Semenov arithmetic with the remainder function (x, y) 7→ (x mod 2y) yields a
first-order theory called Büchi-Semenov arithmetic. From a logic viewpoint, ILEP is the conjunctive
fragment of Büchi-Semenov arithmetic. This theory is more expressive than Semenov arithmetic:
back to our toy example, bit(b, y) is definable simply as ∃z : z = y + 1∧(b mod 2z)− (b mod 2y) ≥ 1.
Recent research shows that Büchi-Semenov arithmetic has practical applications in solving string
constraints [WCW+23, DHM24]. This also prompted the study of extensions of ILEP featuring
regular predicates (constraints x ∈ R where R is a regular expression), though the complexity of
the feasibility problem for these extensions cease to be in NP and becomes PSpace-hard [DHM24,
Sta25]. It is worth noting that, at the time of writing this paper, all existing tools for Semenov and
Büchi-Semenov arithmetic, such as those described in [WCW+23, FG24], are limited to providing
yes/no answers or binary-encoded solutions. In this setting, the ILESLPs studied in this paper offer
what is arguably the most natural certificate format these tools could use.

11

Table of contents

I Polynomial-size ILESLPs for optimal solutions 13
This part of the paper establishes Theorem 1. This is the longest part of the paper, due to the many
technical details that must be resolved in order to obtain a proof of the theorem. An Advice: The
reader should consider skipping the proofs on a first reading; the surrounding text should suffice to
convey the intuition behind the most of the constructions involved in the proofs. An exception to
this is Proposition 3, for which we recommend reading the proof during the first pass.

2 The algorithm for deciding ILEP feasibility, briefly 15

3 Exploring optimal solutions through monotone decompositions 20

4 Monotone decompositions for ILEP 22

5 An efficient variable elimination that preserves optimal solutions 33

6 Proof of Theorem 1 48

II Deciding properties of ILESLPs 64
This part presents the algorithm for manipulating and deciding properties of ILESLPs. In par-
ticular, it establishes Lemmas 1 and 2, and describe how to compute an ILESLP representing
JσK (x) mod 2JσK(y), which constitutes the main step towards the proof of Proposition 2. Part II is
completely independent of Part I (except for the short Lemma 10).

7 Deciding NatILESLP in polynomial time 64

8 Deciding DivILESLP in Pfactoring 69

9 Computing an ILESLP representing x mod 2y 72

III On the complexity of ILEP 75
This part builds on the results from the previous two parts in order to prove Corollary 1.

10 The complexity class NPO-cmp 75

11 ILEP is in NPO-cmp 76

IV Appendices 81
The appendices include additional material (Appendices A and B) as well as complete proofs of
those statements whose arguments were omitted or only outlined in the main text.

A The Sequential Squaring Assumption and ILESLPs 81

B The algorithm for deciding ILEP: Further information on Steps I and III 84

C Proofs of statements from Part I 91

D Proofs of statements from Part II 107

12

Part I: Polynomial-size ILESLPs for optimal solutions

Part I

Polynomial-size ILESLPs for optimal solutions
This first part of the paper is fully devoted to proving Theorem 1. After introducing some prelimi-
nary definitions and notation (see below), we begin (in Section 2) with a high-level overview of the
algorithm from [CMS24] for solving the feasibility problem for ILEP. In particular, we expand on
the description given in Section 1.4, identifying the specific step —which we refer to as the “vari-
able elimination step”— where the non-deterministic executions of this algorithm may fail to cover
optimal solutions. We also explain how each execution is ultimately constructing an ILESLP.

In Section 3, we present a framework for deriving a variable elimination step tailored for opti-
mization. The framework relies on splitting the search space into regions within which the objective
function is (in some sense) monotone. An optimal solution can then be found by examining points
that are close to the boundary of these regions. Section 4 instantiates this framework to ILEP. This
instantiation reveals a set of additional constraints, beyond the ones required to solve the feasibility
problem, that are required to characterize the regions of the decomposition.

The results in Section 4 carry over to Section 5, where we implement the optimum-preserving
variable elimination step. Ensuring that the overall procedure runs (non-deterministically) in poly-
nomial time requires great care. To this end, we revisit the arguments from [CMS24] concerning the
integration of Bareiss algorithm into the quantifier elimination procedure of Presburger arithmetic,
and show that the constraints added by the monotone decomposition retain enough structure to
allow a suitable variation of Bareiss algorithm to be successfully implemented.

Finally, Section 6 presents the complete optimization procedure for integer linear-exponential
programming. From the correctness and complexity analysis of this procedure, we conclude that its
output is a polynomial-size ILESLP, thereby proving Theorem 1.

We now present the preliminaries for this part of the paper. Some of the concepts introduced
here reiterate those from Section 1, albeit given in a slightly more formal manner.

Basic notation. For a ∈ R, we write |a|, ⌈a⌉, and log a for the absolute value, ceiling, and (if
a > 0) the binary logarithm of a. All numbers encountered by our algorithm are encoded in binary;
assuming that n ∈ Z is represented using ⌈log(|n|+ 1)⌉ + 1 bits. For a, b ∈ R, we write [a..b] to
denote the set {n ∈ Z : a ≤ n ≤ b}. Vectors are denoted using boldface letters, as in x or y. We
write #x for the number of entries in x; similarly, #S stands for the cardinality of a finite set S.

Integer Linear-Exponential Terms. A linear-exponential term τ is an expression∑n

i=1

(
ai · xi + bi · 2xi +

∑n

j=1
ci,j · (xi mod 2xj)

)
+ d,

where ai, bi, ci,j ∈ Z are the coefficients of the term and d ∈ Z is its constant. If all bi and ci,j are
zero then the term is said to be linear. If ai ̸= 0, we call ai ·xi a linear occurrence of xi. If bi = 0, we
say that xi does not occur in exponentials; this is weaker than saying that xi only occurs linearly, as
in this case we also have ci,j = 0 for all j ∈ [1..n]. We assume all variables used in linear-exponential
terms to belong to a totally-ordered countable set X, and write τ(x) if all variables in the term τ are
from the vector (or set) x. The 1-norm of τ is defined as ∥τ∥1 :=

∑n
i=1(|ai|+ |bi|+

∑n
j=1 |ci,j |)+ |d|.

The size of τ is defined as the number of symbols needed to write down the term, assuming that
integers are encoded in binary, and that the kth variable in the ordering of X requires k bits. Given
a map ν : X → N, where X is a subset of X including the variables in x, we write ν(τ) for the

13

Part I: Polynomial-size ILESLPs for optimal solutions

integer obtained by evaluating τ on ν, that is, replacing every variable x occurring in τ with ν(x),
and evaluating all operations in the resulting term.

For a variable y ∈ X and b ∈ N, we write [y 7→ b] for the map ν with domain {y} and such that
ν(y) = b. Let ν1 : X1 → N and ν2 : X2 → N be two maps. The expression ν1 + ν2 defines the map
(ν1 + ν2) : X1 ∪X2 → N assigning ν1(x) + ν2(x) to every x ∈ X1 ∪X2, where we assume νi(x) = 0
whenever x ̸∈ Xi. Therefore, ν + [y 7→ b] stands for the map obtained from ν by adding b to the
value given to y (again, assuming ν(y) = 0 if y ̸∈ X).

Integer Linear-Exponential Programs. A (integer) linear-exponential program φ is a conjunc-
tion of constraints τ = 0 and τ ≤ 0, where τ is a linear-exponential term. If all terms are linear,
then φ is an (integer) linear program. We sometimes diverge from this syntax, but the intended
meaning of the constraints should always be clear from the context. For instance, we sometimes
write τ1 ≤ τ2 as a shorthand for τ1 − τ2 ≤ 0, and τ1 < τ2 as a shorthand for τ1 − τ2 + 1 ≤ 0. We
write φ(x) when the free variables of φ are from the vector x.

While linear-exponential programs only feature equalities and inequalities, symbolic procedures
for ILEP, such as the one developed in [CMS24], require the introduction of additional divisibility
constraints d | τ , where τ is a linear-exponential term, d ∈ N is non-zero, and | is the divisibility pred-
icate, {(d, n) ∈ Z×Z : n = k · d for some k ∈ Z}. Without loss of generality, we assume all integers
in the term τ to belong to [0..d−1]; our procedures will tacitly enforce this assumption by reducing
all integers modulo d. We say that the linear-exponential program is with divisions if we allow
divisibility constraints to occur in it. For simplicity of the presentation, we also sometimes consider
arbitrary formulae from Büchi-Semenov arithmetic. In this theory, linear-exponential programs
with divisions are extended to include the standard features of first-order logic, such as conjunc-
tion (∧), disjunction (∨), negation (¬), implication (=⇒) and first-order quantification (∀ and ∃).
For example, in the forthcoming sections we will often write equalities u = 2x−y, which should be
seen as shortcuts for formulae ∃z (u = 2z ∧ z = x− y), where z is a fresh variable. Note that, since
we are only interested in non-negative integer solutions (see below), u = 2x−y implies x ≥ y.

Let φ be a linear-exponential program with divisions. We write:

• #φ for the number of constraints (inequalities, equalities and divisibility constraints) in φ;

• vars(φ) for the set of all variables occurring in φ;

• terms(φ) for the set of all terms τ occurring in inequalities τ ≤ 0 or equalities τ = 0 of φ;

• ∥φ∥1 := max{∥τ∥1 : τ ∈ terms(φ)};

• given a vector x of variables, mod(x, φ) for the least common multiple of the divisors d of the
divisibility constraints d | τ of φ in which at least one variable from x occur (with a non-zero
coefficient). We omit x, and simply write mod(φ), when considering all variables in φ.

The size of φ is defined as the number of symbols required to write it down (following the same
assumptions used for defining the size of a term).

A map ν : X → N, where X is a finite subset of X, is a solution to a linear-exponential program
with divisions φ whenever (i) X includes all variables occurring in φ, and (ii) replacing each variable
x in φ with ν(x) lead to all constraints (inequalities, equalities and divisibilities) being satisfied.
For convenience, we sometimes see the set of solutions to φ not as a set of maps but as a subset
S ⊆ Nd, where d is the number of variables in φ. The ith entry of each vector in S corresponds to
the ith variable occurring in φ, with respect to the total order of the set X.

14

Section 2: The algorithm for deciding ILEP feasibility, briefly

Integer Linear-Exponential Programming (ILEP). By Integer Linear-Exponential Program-
ming we mean solving the maximization problem (or the analogous minimization problem)

maximize τ(x) subject to φ(x),

where τ is a linear-exponential term (the objective function) and φ is a linear-exponential program
(without divisions). Unless otherwise stated, we stress that all the variables in an instance of integer
linear-exponential programming range over the natural numbers.

A map ν : X → N, is a solution to an instance of integer linear-exponential programming
whenever X includes all variables occurring in τ and φ, and ν is a solution to φ. The value of the
objective function τ for the solution ν is the integer ν(τ).

Substitutions. For technical reasons, we need an ad-hoc form of term substitution. We denote
such a substitution with [τa / b ·x], where τ is a linear-exponential term, x is a variable, and a and b
are two non-zero integers. (This substitution can be interpreted as enforcing the equality a·b·x = τ .)
When applied to a linear-exponential term ρ, the resulting term ρ[τa / b ·x] is constructed as follows:

1. Multiply every integer in ρ by |a|.

2. Consider the linear occurrence of x in ρ (if there is one). Try to factorize its coefficient as
a · b · c, for some non-zero c ∈ Z. If successful, replace a · b · c · x with c · τ .

Observe that, to eliminate x using this substitution, we need to ensure that it only occurs linearly
in ρ, and that its coefficient is divisible by b. We omit a and/or b from [τa / b · x] when they are
equal to one, writing for instance [τ / x] instead of [τ1 / 1 · x].

We will also need to simultaneously apply multiple substitutions to terms. Consider distinct
variables x1, . . . , xn, terms τ1, . . . , τn not featuring these variables, and two non-zero integers a
and b. By simultaneously applying the substitutions [τ1a / b · x1], . . . , [

τn
a / b · xn] to the term ρ we

mean the process of first multiplying every integer in ρ by |a|, to then apply to the resulting term
the substitutions [τ1 / a · b · x1], . . . , [τn / a · b · xn] (in any order). So, differently from sequentially
applying [τ1a / b · x1], . . . , [

τn
a / b · xn], simultaneous substitutions multiply by |a| only once.

When applying a substitution [τa / b · x] to a linear-exponential program with divisions φ, the
resulting program φ[τa / b · x] is constructed as follows:

• For every equality ρ = 0 or inequality ρ ≤ 0 occurring in φ, replace ρ with ρ[τa / b · x].

• Replace every divisibility constraint d | ρ occurring in φ with (|a · b| · d) | ρ[τa·b / x] .

2 The algorithm for deciding ILEP feasibility, briefly

We present a high-level overview of the procedure from [CMS24] for deciding the feasibility problem
of ILEP, highlighting its properties in the context of optimization. As we will see, the main loop of
the procedure can be divided in four steps (Steps I–IV). Steps I and III preserve optimal solutions;
we can thus use them as black-boxes when designing our optimization procedure. Appendix B gives
more information on these two steps, as well as their pseudocode. In contrast, Step II and IV may
discard all optimal solutions. Step II is the main “variable elimination step”, which we will focus on
in the upcoming sections of this part of the paper. Step IV is a simplified variant of Step II, and
will be handled directly when presenting the full optimization procedure in Section 6.

Let φ be an input ILEP. As a preliminary step, the procedure in [CMS24] non-deterministically
guesses an ordering θ of the form 2xn ≥ · · · ≥ 2x1 ≥ 2x0 = 1. Here, x1, . . . , xn is a permutation

15

Section 2: The algorithm for deciding ILEP feasibility, briefly

θ(x) : ordering 2x ≥ 2y ≥ · · · ≥ 2x0 = 1

φ(x, r) : linear-exponential program with divisions

γ(qx, q, u) : linear program with divisions

ψ(y, rx, r
′) : linear-exponential program with divisions

γ′(qx, u) : linear program with divisions

γ′′(qx) : linear program with divisions

ψ′′(y, rx) : linear-exponential program with divisions

Step IV:
is γ′′ satisfiable?

reject

φ← ψ ∧ ψ′′

θ ← (2y ≥ · · · ≥ 2x0 = 1)

Step I (Lemma 4)

Step II (Lemma 5)

Step III (Lemma 6)

no

yes

φ implies r < 2y.
Variables r not in exponentials.

ψ implies rx < 2y ∧ r′ < 2y.
r′ and rx not in exponentials.
y are the variables x, excluding x.
Key equations connecting φ with γ
and ψ: u = 2x−y, x = qx · 2y · rx
and r = q · 2y + r′.

Step II eliminates the variables q.
Main problem: Step II preserves
equisatisfiability, but optimal solu-
tions may be lost.

Step III eliminates u and, following
the equations x = qx · 2y + rx and
u = 2x−y, also elminates x.

If (2y ≥ · · · ≥ 2x0 = 1) is (2x0 = 1)
then the loop exists, and the algo-
rithm checks if φ(0) is a solution.

Figure 1: Flowchart of the main loop of [CMS24].

of the variables in φ, whereas x0 is a fresh variable introduced to handle the termination of the
algorithm. Note that φ ∧ (2x0 = 1) is equivalent to the disjunction

∨
θ∈Θ(φ ∧ θ) ranging over the

set of all orderings Θ. In the context of optimization, no optimal solution is lost in this step of the
procedure: it suffices to optimize locally to each disjunct φ ∧ θ, and then take the maximum (or
minimum) of the resulting optimal solutions.

After guessing the ordering θ, the algorithm enters its main loop, where it iteratively eliminates
from φ and θ all variables x1, . . . , xn, starting from the largest one in θ. These eliminations introduce
new remainder variables r, variables that never occur in exponentials, and are always smaller than
the largest term in θ. After eliminating xn, . . . , xi, the ordering θ is updated to 2xi−1 ≥ · · · ≥ 2x0 = 1,
and all remainder variables are constrained to be smaller than 2xi−1 . After n iterations of the main
loop, θ reduces to just 2x0 = 1, and φ becomes a formula φ′(x0, r) that implies r < 2x0 . The main
loop terminates. The only possible solution for φ′∧ (2x0 = 1) is (x0, r) = 0; and if this is a solution,
then the original formula φ is satisfiable.

We now describe an iteration of the main loop, dividing it in the aforementioned Steps I–IV.3 To
aid in following the interactions between these steps, Figure 1 is provided alongside the description.

Step I (division by 2y). Let 2x and 2y be the largest and second-largest terms in θ (so, x ̸= x0).
The first step to eliminate x is to symbolically divide all linear occurrences of this variable, as well
as all remainder variables r, by 2y. That is, the algorithm rewrites the linear occurrences of x as

3Our division of the procedure into steps differs from that used by the authors of [CMS24] to describe the algorithm.
Specifically, we have included lines 4–14 of Algorithm 2 of [CMS24] as part of the Step I, instead of considering them
separately. This adjustment is made solely for the sake of presentation clarity.

16

Section 2: The algorithm for deciding ILEP feasibility, briefly

qx ·2y+rx, and r as q ·2y+r′, where the fresh variables (qx, q) and (rx, r) represent the quotient and
remainder of the division by 2y, respectively. The variables rx and r′ are remainder variables in the
next iteration of the main loop; and indeed the algorithm adds the constraints rx < 2y and r′ < 2y

to the system. The variables qx and q are called quotient variables. The procedure introduces a
further expression u = 2x−y, with u fresh, and through several manipulations decouples the quotient
variables from all other variables except u (this is similar to a monadic decomposition [Lib03]). The
key equivalences enabling this decoupling are given in the next lemma. In the context of the
algorithm, the integer t in this lemma corresponds to a linear term featuring the variable u and the
quotient variables q, whereas the integer s corresponds to a linear-exponential term involving the
remainder variables rx and r′, linear occurrences of y, and all the variables in θ that are distinct
from x and y. The key point is that, in the right-hand side of the equivalences in the lemma, t and
s are decoupled (that is, they never appear together within a single (in)equality).

Lemma 3 [CMS24]. Let C,D ∈ Z, with C ≤ D. For y ∈ N, t ∈ Z, and s ∈ [C · 2y..D · 2y], the
following equivalences hold:

1. t · 2y + s = 0 ⇐⇒
∨D
r=C

(
t+ r = 0 ∧ s = r · 2y

)
,

2. t · 2y + s ≤ 0 ⇐⇒
∨D
r=C

(
t+ r ≤ 0 ∧ (r − 1) · 2y < s ≤ r · 2y

)
,

3. t · 2y + s < 0 ⇐⇒
∨D
r=C

(
t+ r + 1 ≤ 0 ∧ s = r · 2y

)
∨
(
t+ r ≤ 0 ∧ (r − 1) · 2y < s < r · 2y

)
.

To see Lemma 3 in action, consider the equality 2x−2y+y−z = 0. Assuming θ = (2x ≥ 2y ≥ 2z)
and u = 2x−y, we can rewrite this equality as (u−1) ·2y+y−z = 0. Moreover, we see that θ implies
that y − z belongs to [0 · 2y..1 · 2y]. Then, Lemma 3.1 tells us that the equality can be rewritten
as

∨1
r=0((u − 1) + r = 0 ∧ (y − z) = r · 2y). Here, the equation (u − 1) + r = 0 is in a sense the

“quotient” of the division by 2y, whereas y− z = r · 2y indicates properties of the “remainder” of the
division (in this case, that y − z has remainder zero when divided by 2y).

The effects of Step I of the main loop are formalized in the next lemma, where the output formula
γβ contains the “quotients” of the divisions by 2y, and ψβ contains constraints on the “remainders”.

Lemma 4 [CMS24]. There is a non-deterministic procedure with the following specification:

Input: θ(x) : ordering of exponentiated variables;
[Below, let 2x and 2y be the largest and second-largest terms in this ordering, and
let y be the vector obtained by removing x from x.]

φ(x, r) : linear-exponential program with divisions, implying r < 2x.
Variables r do not occur in exponentials.

Output of each branch (β):

γβ(qx, q, u) : linear program with divisions;
ψβ(y, rx, r

′) : linear-exponential program with divisions, implying rx < 2y ∧ r′ < 2y.
Variables rx and r′ do not occur in exponentials.

The variables qx, q, u, y, rx and r′ are common to all outputs, across all non-deterministic branches.
The procedure ensures that the system[

x
r

]
=

[
qx
q

]
· 2y +

[
rx
r′

]
, (3)

yields a one-to-one correspondence between the solutions of φ ∧ θ and the solutions of the formula∨
β

(
γβ ∧ ψβ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx) ∧ θ

)
. This correspondence is the identity for the vari-

ables these two formulae share (that is, the variables in x).

17

Section 2: The algorithm for deciding ILEP feasibility, briefly

The one-to-one correspondence described in Lemma 4 implies that no solution is lost in this step
of the procedure. We can therefore use Step I also in the context of optimization.

Step II (variable elimination: the problematic step). The procedure now considers the
linear program with divisions γ(qx, q, u) in output of Step I, and applies a quantifier elimination
procedure to remove all the quotient variables in q. (Not qx, this quotient variable cannot be
eliminated yet, because the equalities u = 2x−y and x = qx · 2y + rx shown in Lemma 4 make
the variable u depend exponentially on qx.) This elimination step mixes ingredients from the
quantifier elimination procedure for Presburger arithmetic [Wei90] with Bareiss’ version of Gaussian
elimination [Bar68]. As in the case of the former of these two procedures, this step introduces new
divisibility constraints. Here is the specification of Step II:

Lemma 5 [CMS24]. There is a non-deterministic procedure with the following specification:

Input: γ(qx, q, u) : linear program with divisions.

Output of each branch (β): γ′β(qx, u) : linear program with divisions.

The procedure ensures that the formulae ∃q γ and
∨
β γ
′
β are equivalent. Let q = (q1, . . . , qk).

Furthermore, for every branch β, there is a system of equalities

a1 · q1 = τ1(u, qx) , . . . , ak · qk = τk(u, qx) , (4)

where each ai ∈ Z is non-zero and each τi is a linear term, with the following property. The
formula γ′β is obtained from γ by performing the sequence of substitutions [τ1a1 / q1], . . . , [

τk
ak
/ qk] and

conjoining the system of divisibilities (a1 | τ1(u, qx)) ∧ · · · ∧ (ak | τk(u, qx)).

Concerning optimization, the guarantees achieved by this crucial step of the procedure are too
weak. Rather than establishing a one-to-one correspondence between the solutions of the input and
those of the outputs, it only achieves an equivalence with respect to the variables qx and u. Notably,
if some variables from q appear in the objective function, then optimal solutions may be lost.

Step III (elimination of x and u). The third step of the main loop is somewhat similar to the
first one. We start with the formula γ′(qx, u) obtained from Step II, add the constraints x = qx·2y+rx
and u = 2x−y, and decouple qx from all other variables. By using machinery developed by Semenov
in [Sem84], this decoupling makes it possible to eliminate the variables x and u.

Here is the specification of Step III:

Lemma 6 [CMS24]. There is a non-deterministic procedure with the following specification:

Input: γ′(qx, u) : linear program with divisions.

Output of each branch (β): γ′′β(qx) : linear program with divisions;
ψ′′β(y, rx) : linear-exponential program with divisions.

The procedure ensures that the equation

x = qx · 2y + rx (5)

yields a one-to-one correspondence between the solutions of γ′ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx)
and the solutions of

∨
β

(
γ′′β ∧ ψ′′β

)
. This correspondence is the identity for the variables these two

formulae share (that is, y, qx and rx).

As in the case of Step I, the one-to-one correspondence described in Lemma 6 ensures that
optimal solutions are preserved during this step of the main loop.

18

Section 2.1: Where are the ILESLPs?

Step IV (elimination of qx). After Step III completes, we are left with its output formulae
γ′′(qx) and ψ′′(y, rx), and the formula ψ(y, rx, r

′) computed in Step I. The main loop of now
performs one last operation: it checks whether γ′′ (a univariate linear program with divisions)
is satisfiable. If it is, γ′′ can be replaced with ⊤, effectively eliminating the variable qx. (Otherwise,
the non-deterministic branch of the program rejects.) An alternative way of implementing Step IV
is to apply the variable elimination procedure underlying Lemma 4, but again this may cause the
algorithm to lose all optimal solutions. In this particular case, since γ′′ only features the variable qx,
the formula constructed by the variable elimination procedure simply replaces qx with an integer c;
i.e., the system of equalities analogous to the one in Equation (4) simplifies in this case to just qx = c.

This concludes the current iteration of the main loop of the procedure. If y is not the variable x0,
the loop performs another iteration. In that iteration, the input to Step I becomes the ordering θ′

obtained from θ by removing the term 2x (2y is now the largest term), together with the linear-
exponential program with divisions ψ(y, rx) ∧ ψ′′(y, rx, r′).

2.1 Where are the ILESLPs?

As emphasized in Lemmas 4 to 6, the procedure in [CMS24] is in a sense guided by Equations (3)
to (5). Upon closer inspection, we see that these equations are constructing an ILESLP. Let us
reason bottom-up and suppose that we have constructed an ILESLP σ that is a solution to the
formula ψ(y, rx)∧ψ′′(y, rx, r′)∧ θ′ described above. We construct an ILESLP that is a solution for
φ ∧ θ by appending further assignments to σ. The first three assignments are

z1 ← 2y, z2 ← c · z1, x← z2 + rx,

where z1 and z2 are auxiliary fresh variables, and c is the integer in the equation qx = c. We are
essentially performing the assignment x← c · 2y + rx, accordingly to Equation (5). Observe that σ
already assigns expressions to y and rx. Next, we add assignments to represent each variable in r.
For each variable v belonging to r we have

v = qv · 2y + v′ HEquation (3), where v′ is some variable in r′I

=
τ(u, qx)

a
· 2y + v′ HEquation (4)I

=
b · 2x−y + d

a
· 2y + v′ Husing u = 2x−y and qx = cI

=
b · 2x + d · 2y

a
+ v′,

for some integers a, b, d, with a ̸= 0. We can easily add assignments to σ to obtain v ← b·2x+d·2y
a + v′.

The resulting ILESLP is guaranteed to be a solution to φ ∧ θ.

2.2 OptILEP: from feasibility to optimization

Following the above description of the procedure from [CMS24], it should be now clear that a way
to obtain a procedure for the optimization problem of ILEP is to focus on the “variable elimination
step” (Step II), strengthening it into a procedure that is guaranteed to explore an optimal solution.
In the remainder of the paper, we refer to the resulting procedure as OptILEP. We will present
the pseudocode of this procedure in Section 6 (see Algorithm 6). For now, the specific details of the
procedure are unimportant; the only features to keep in mind are the following:

• The procedure begins by guessing an ordering θ of the form 2xn ≥ · · · ≥ 2x1 ≥ 2x0 = 1, where
x1, . . . , xn are the variables appearing input instance of ILEP.

19

Section 3: Exploring optimal solutions through monotone decompositions

• It then iteratively eliminates the variables xn, . . . , x1 (in this order), updating both the linear-
exponential program and the objective function. Every iteration of this “main loop” appeals to
Step I and Step III of [CMS24], interposed with an optimum-preserving “variable elimination
step”. This elimination step instantiates the template given by Algorithm 1 (ElimVars),
introduced in Section 1.4. The main loop concludes with a step analogous to Step IV, modified
along the same lines as Step II to ensure preservation of optimal solutions.

3 Exploring optimal solutions through monotone decompositions

As explained in the overview given in Section 1.4, the template for the “variable elimination step”
given by Algorithm 1 (ElimVars) eliminates some variables x from a system of constraints φ (in
which the variables x occur linearly) and an objective function f , by iteratively

1. Guessing an equation a · x = τ from a finite set of test points TP(x, f, φ), where a is a non-zero
integer, and x is a variable from x that still occurs in f or φ.

2. Appealing to an elimination discipline Elim, which updates f and φ by “replacing x with τ
a ”.

(Intuitively, this means that we will only be searching for solutions lying inside the hyperplane
described by the equation a · x = τ .)

In this section, we describe a method, based on monotone decompositions of the search space,
for constructing sets of test points that are guaranteed to preserve at least one optimal solution. We
develop the approach in a general setting, where the objective function is treated as a black box.

Some notation. Given d ∈ N and i ∈ [1..d], we write edi for the i-th vector of the canonical basis
of Rd (i.e., edi has a 1 at the i-th component and 0 elsewhere); omitting the superscript d when clear
from the context. A set S ⊆ Nd is said to be (i, p)-periodic if for any v ∈ S and v+m · ei ∈ S with
m ≥ p, we also have v + p · ei ∈ S. We write ∆p

i [f] for the i-th p-spaced partial finite difference of
a function f : Rd → R. It is defined as ∆p

i [f](x) := f(x+ p · ei)− f(x), for every x ∈ Rd.
A function f : Rd → R is said to be (i, p)-monotone locally to a set S if there is a sign

∼ ∈ {<,=, >} such that for every v ∈ S with v + p · ei ∈ S, we have ∆p
i [f](v) ∼ 0. When

considering logical formulae, we will abuse this notation and, in the above definitions, replace the
indices of the entries of vectors by variable names. For instances, we will say that the set of solution
of a formula φ(x) is (x, p)-periodic, with x being a variable from x, and we will write ∆p

x[f] for the
p-spaced partial finite difference of f with respect to (the coordinate corresponding to) x.

Locating optimal solutions for monotone functions. We start by adapting a folklore result
from Presburger arithmetic to ILEP: with respect to a linearly occurring variable, the set of solutions
of an integer linear-exponential program is periodic. (See [Smo91, Theorem 4.10] for a similar result.)

Lemma 7. Proof in
page 92

Let φ be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. The set of solutions of φ is (x,mod(x, φ))-periodic.

The periodic behavior described in the above lemma implies that, for monotone functions, opti-
mal solutions are located near the boundary of the feasible region described by the integer program.
This boundary is determined by equalities of τ = 0 that are derived from (in)equalities τ ∼ 0 ap-
pearing in the program (where ∼ ∈ {=,≤}). To ensure we find an optimal solution, it suffices to
examine shifted versions of these boundary equalities, that is equalities of the form τ + s = 0, where
s ranges over a small set of integer offsets.

20

Section 3: Exploring optimal solutions through monotone decompositions

Lemma 8. Proof in
page 92

Let φ(x) be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. Let p := mod(x, φ), and let f(x) be a (x, p)-monotone function locally to the set of
solutions to φ. If the instance (f, φ) has a maximum (analogously, a minimum), then it has one
satisfying an equation a·x+τ+r = 0, where (a·x+τ) ∈ terms(φ∧x ≥ 0), a ̸= 0, and r ∈ [0.. |a|·p−1].

By considering f(x) = x and considering the minimization problem, Lemma 8 simplifies to the
following corollary. This corollary, in fact, captures the core argument found in nearly all proofs of
quantifier elimination in Presburger arithmetic (see, e.g., [Wei90, Lemma 2.6]).

Corollary 2. Proof in
page 93

Let φ be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. If φ has a solution, then it has one satisfying an equation a · x + τ + r = 0, where
(a · x+ τ) ∈ terms(φ ∧ x ≥ 0), a ̸= 0, and r ∈ [0.. |a| ·mod(x, φ)− 1].

Locating optimal solutions for non-monotone functions. Lemma 8 suggests a natural strat-
egy for tackling optimization problems involving non-monotone functions: partition the search space
into multiple regions where the function becomes monotone. This idea is formalized with the subse-
quent definition of monotone decomposition and Lemma 9. It is important to note that, depending
on the objective function, constructing such a decomposition with only regions that can be char-
acterized with integer linear-exponential programs (or other desired classes of constraints) can be
highly non-trivial or even impossible. In the next section, we show how to achieve this only in the
specific setting needed to solve the ILEP optimization problem.

Definition 1 (Monotone decomposition). A (i, p)-monotone decomposition of S ⊆ Nd for a function
f : Rd → R is a finite family R1, . . . , Rt ⊆ Nd such that (i) S =

⋃t
j=1Rj and (ii) for every j ∈ [1..t],

Rj is (i, p)-periodic and f is (i, p)-monotone locally to Rj.

Lemma 9. Proof in
page 93

Let φ be a linear-exponential program with divisions, and x be a variable occurring
linearly in φ. Suppose that the set of solutions to φ has a (x,mod(x, φ))-monotone decomposition
R1, . . . , Rt for a function f , where each Ri is the set of solutions of an integer linear-exponential
program with divisions ψi in which x occurs linearly. If the instance (f, φ) has a maximum (anal-
ogously, a minimum), then it has one satisfying an equation a · x + τ + r = 0 such that a ̸= 0,
(a · x+ τ) ∈ terms(ψi ∧ x ≥ 0) and r ∈ [0.. |a| ·mod(x, ψi)− 1], for some i ∈ [1..t].

Remark 2. Consider φ, x, and f as in Lemma 9. By defining TP(x, f, φ) as the set of all equalities
a ·x+τ+r = 0 specified in that lemma, we are guaranteed to explore at least one optimal solution (if
optimal solutions exists). Notably, when designing a non-deterministic polynomial-time procedure,
neither the number of regions nor the number of constraints required to describe each region is
inherently restrictive. The key requirement is instead the ability to guess a single equation involving
the variable x targeted for elimination. This means that, while the total number of distinct constraints
containing x can be at most exponential across regions, the number of constraints independent of x
can be arbitrarily large (and these need not even be expressible as linear-exponential programs).

Remark 3. All lemmas in this section were formulated for linear-exponential programs with divi-
sions. However, upon inspecting their proofs, it should be evident that the only crucial assumption
is the linear occurrence of x. Indeed, these lemmas could have been stated for any expansion of
integer linear programming augmented with arbitrary functions, provided that “occurring linearly” is
interpreted as “occurring only within the scope of addition”.

21

Section 4: Monotone decompositions for ILEP

4 Monotone decompositions for ILEP

We now specialize the setting from the previous section, constructing monotone decompositions for
the instances that ElimVars must be able to handle in order for OptILEP to explore optimal
solutions. In doing so, great attention must be paid to ensure that the formulae and ILESLPs
computed throughout the procedure remain of polynomial size. Proving that this is the case will
occupy us through the end of Section 6.

To simplify the exposition, we work under the following assumptions:

1. The linear-exponential program φ in input to OptILEP features the variables x1, . . . , xn.

2. The goal is to maximize a single variable xm, with m ∈ [1..n]. (Section 6 will relax this as-
sumption to handle both maximization and minimization of general linear-exponential terms.)

3. The ordering θ guessed at the very beginning of OptILEP is θ := (2xn ≥ · · · ≥ 2x1 ≥ 2x0 = 1).

As stated in Section 2.2, OptILEP iteratively eliminates xn, . . . , x1. Throughout the section, we
assume that the variables xn, . . . , xn−k+1 have already been successfully eliminated while preserving
optimal solutions, for some k ∈ [0..n−1]. We focus on the elimination of xn−k, which occurs during
the (k + 1)th iteration of the main loop of OptILEP. More precisely, we consider the appeal
to ElimVars during this (k + 1)th iteration. According to Section 2.2, this appeal is preceded by
an application of Step I of the procedure from [CMS24] (Lemma 4), and is followed by Step III of
the same procedure (Lemma 6). With respect to this (k + 1)th iteration, we define:

4. The vector xk := (xn−k, . . . , xn) containing all variables that have been eliminated, plus xn−k.

5. The ordering θk := (2xn−k ≥ · · · ≥ 2x0 = 1) obtained from θ by removing the variables that
have been eliminated. We also define yk := (x0, . . . , xn−k) for the variables in this ordering.
Note that yk and xk only share the variable xn−k.

6. The vectors qk := (qn−k, . . . , qn) and rk := (rn−k, . . . , rn) of the quotient variables and remain-
der variables introduced during the (k+1)th iteration the main loop of OptILEP (accordingly
to Lemma 4). We assume the variables q1, . . . , qn, r1, . . . , rn to be reused at each iteration;
e.g., qk−1 = (qn−(k−1), . . . , qn) is the vector of quotient variables used at the kth iteration.
Given ℓ ∈ [0..k], we also write q[ℓ,k] for the vector (qn−k, . . . , qn−ℓ).

4.1 Setup

We now introduce a class of circuits that model the evolution of the objective function during the
execution of OptILEP, and characterize the class of objective functions and systems of constraints
for which we design our monotone decomposition.

Linear-Exponential arithmetic circuits. In Section 2.1 we gave a bottom-up argument of how
the procedure from [CMS24] constructs ILESLPs. An analogous top-down perspective shows the
construction of ILESLPs by progressively building Linear-Exponential Arithmetic Circuits (LEACs):

Definition 2 (LEAC). Let k ∈ [0..n − 1] and ℓ ∈ [0..k]. An (k, ℓ)-linear-exponential arithmetic
circuit C —a (k, ℓ)-LEAC, in short— is a sequence of assignments of the form

qn−i ←
τn−i(u, q[ℓ,k])

η
for i from ℓ− 1 to 0,

xn−i ←
∑k

j=i+1 ai,j · 2xn−j

µ
+ qn−i · 2xn−k−1 + rn−i for i from k to 0,

22

Section 4.1: Setup

where each τn−i is a linear term (with integer coefficients), every ai,j is in Z, and the denominators
η and µ are positive integers. We refer to these denominators as µC and ηC , respectively. When
k = 0, the sum

∑k
j=i+1 ai,j · 2xn−j equals 0, and so we are free to update µC to any positive integer;

we postulate µC := 1 in this case. If ℓ = 0, then ηC is undefined; for technical reasons we postulate
ηC := µC in this case. Moreover, we define ξC :=

∑
{|ai,j | : i ∈ [0..k], j ∈ [i+ 1..k]}, and write

vars(C) for the set of free variables of C, i.e., u, xn−k−1, and those in the vectors q[ℓ,k] and rk.

Objective functions. Consider a (k, ℓ)-LEAC C, and a variable xm with m ∈ [1..n]. We denote
by C[xm] the (objective) function defined as follows: If n− k > m, then C[xm] takes as input maps
ν : X → N where X is a set of variables featuring xm, and returns ν(xm). Else, C[xm] takes as input
maps ν : X → N such that vars(C) ⊆ X, and outputs the number C[xm](ν) computed as follows:
1: update C: replace each variable z ∈ vars(C) with ν(z)
2: evaluate C ▷ each assignment becomes y ← a where a is a number
3: return the number assigned to xm in C

The instances. For our purposes, it suffices to define the monotone decomposition for elements
of a set

⋃n−1
k=0

⋃k−1
ℓ=0 Iℓk, where Iℓk (defined also for ℓ = k) is the set of all pairs (C, ⟨γ ;ψ⟩) such that:

(i) C = (y1 ← ρ1, . . . , yt ← ρt) is a (k, ℓ)-LEAC such that µC divides ηC , as well as all coefficients
of the variables q[ℓ,k] occurring in the term τn−i featured in assignments qn−i ← τn−i

ηC
of C,

with i ∈ [0..ℓ− 1]. (Recall that ηC := µC for ℓ = 0.)

(ii) The formula ⟨γ ; ψ⟩ is a conjunction of a linear program with divisions γ(u, q[ℓ,k]) and a
linear-exponential program with divisions ψ. Inequalities and equalities in γ are such that
all the coefficients of the variables q[ℓ,k] are divisible by µC . Moreover, for every q in q[ℓ,k],
γ contains an inequality a · q ≥ 0, for some a ≥ 1 (divisible by µC). The system ψ is of the
form χ(yk−1, rk) ∧ θk ∧ (xn−k = qn−k · 2xn−k−1 + rn−k) ∧ (u = 2xn−k−xn−k−1).

(We prefer writing ⟨γ ; ψ⟩ instead of γ ∧ ψ as it emphasize more the distinction between γ
and ψ. ElimVars only updates γ, treating ψ as an invariant used to ensure correctness.)

(iii) The formula ⟨γ ; ψ⟩ implies the formula Ψ(C) defined as

0 ≤ rk < 2xn−k−1 ∧ ∃q[0,ℓ−1]
(
0 ≤ qk · 2xn−k−1 + rk < 2xn−k ∧ ∃xk−1

(
θ ∧

∧t
i=1(yi = ρi)

))
.

(For ℓ = 0, simply conjoin 0 ≤ rk < 2xn−k−1 with the formula in the scope of ∃q[0,ℓ−1].
Analogously, for k = 0, the subformula ∃xk−1

(
θ ∧

∧t
i=1(yi = ρi)

)
becomes θ ∧

∧t
i=1(yi = ρi).)

We remark that the variables that are quantified in Ψ(C) are those assigned to some expression
in C, excluding xn−k. In essence, elements of Iℓk satisfy certain basic properties that are sufficient
to obtain a monotone decomposition. (While our proof relies on all of these properties, it remains
unclear whether they are truly necessary for achieving a monotone decomposition.) For example,
the subformula ∃xk−1

(
θ∧

∧t
i=1(yi = ρi)

)
appearing in Ψ(C) ensures that from any solution of ⟨γ ;ψ⟩,

we can assign values to the eliminated variables xn, . . . , xn−k+1 that preserve the ordering θ, simply
by following the assignments defined in the LEAC C. This is consistent with the goal of OptILEP
of finding a solution to the input integer linear-exponential program respecting θ.

23

Section 4.2: The monotone decomposition

Algorithm 2 Additional terms for the monotone decomposition.
▷ see Proposition 3 for the definitions of C, γ and p

1: (a, d) ← guess an element from [−L..L]2, where L := 3 · µC · (4 · ⌈log2(2 · ξC + µC)⌉+ 8)

2: λ← ηC
µC

3: q′, q′′ ← guess two elements in qk−1 (they can be equal)
4: τ ′ ← if C assigns an expression τ

ηC
to q′ then τ else ηC · q′

5: τ ′′ ← if C assigns an expression τ
ηC

to q′′ then τ else ηC · q′′

6: if ∗ then τ ′ ← τ ′[qn−ℓ + p / qn−ℓ] ▷ ∗ stands for non-deterministic choice
7: if ∗ then τ ′′ ← τ ′′[qn−ℓ + p / qn−ℓ]

8: (b · qn−ℓ − ρ) ← term obtained from (a · u+ µC · (q′ − q′′) + d) by simultaneously applying
the substitutions [τ

′

λ / µC · q
′] and [τ

′′

λ / µC · q
′′]

9: assert(b ̸= 0) ▷ else, reject this non-deterministic branch
10: return (b · qn−ℓ − ρ)

4.2 The monotone decomposition

We are now ready to formalize our monotone decomposition:

Proposition 3. Consider (C, ⟨γ ;ψ⟩) ∈ Iℓk, with ℓ < k, and p := mod(qn−ℓ, γ). The set of solutions
to ⟨γ ; ψ⟩ has a (qn−ℓ, p)-monotone decomposition R1, . . . , Rt for the function C[xm]. Each Ri is the
set of solutions of a linear-exponential program with divisions φi satisfying mod(qn−ℓ, φi) = p, and
in which all constraints featuring qn−ℓ are either from γ ∧ γ[qn−ℓ + p / qn−ℓ], or they are inequali-
ties τ ≤ 0, where τ is a term (non-deterministically) returned by Algorithm 2.

The remainder of this section is dedicated to proving Proposition 3. At this stage, we are unable
to motivate why the formulae φi given in Proposition 3 suffice for obtaining a monotone decompo-
sition; rather, these the formulae that naturally emerge when trying to build such a decomposition.

Preliminary results. Before proceeding with the proof of Proposition 3, we need a few lemmas.
The first is a small technical result giving sufficient conditions under which an expression of the
form 2C − 2C/2 − d ·C is non-negative (where d,C ∈ R). Ultimately, this lemma plays a role in the
definition of the quantity L defined in line 1 of Algorithm 2.

Lemma 10. Proof in
page 94

Let d,C ∈ R with d ≥ 1 and C ≥ 4 · log2(d) + 8. Then, 2C − 2C/2 − d · C ≥ 0.

The next lemma echoes some ideas firstly used by Semenov for proving the decidability of
Presburger arithmetic enriched with the exponential function [Sem84]. In a nutshell, it establishes
that, under appropriate hypotheses, any inequality of the form

∑ℓ
i=1 ai · 2xi + µ · y + µ · d ≤ 0 can

be reduced to true (in the lemma, 0 ≤ 0), false (1 ≤ 0), or a simplified inequality where the sum∑ℓ
i=1 ai · 2xi is replaced with a single exponential term a · 2x1 . In our case, this lemma will play a

central role in characterizing the regions of our monotone decomposition.

Lemma 11. Let E be an expression
∑ℓ

i=1 ai · 2xi +µ · y+µ · d, where each ai is in Z, and µ, d ∈ N.
Let M,k ∈ N such that M ≥ max(1+ 2 · log2(

∑ℓ
i=1 |ai|+ k · µ), 4 · log2(µ) + 8, d). Also consider a

formula ψ(x1, . . . , xℓ, y), with y ranging over Z and x1, . . . , xℓ ranging over N, of the form

ψ(x1, . . . , xℓ, y) := −k · 2x1 ≤ y ≤ k · 2x1 ∧
∧ℓ−1

i=1
(xi+1 ∼i xi + di),

24

Section 4.2: The monotone decomposition

where each pair (∼i, di) is either (≥, M) or is of the form (=, g), with g ∈ [0..M−1]. Let ∼ ∈ {≤,=}.
There is an expression E′ from the set {0, 1} ∪ {a · 2x1 + µ · y + µ · d : a ∈ [−4ℓ·M ..4ℓ·M]} such that
the formula ψ implies (E ∼ 0 ⇐⇒ E′ ∼ 0).

Proof. First, observe that if ℓ = 0, then we can take E′ := E. Hence, below let us assume ℓ ≥ 1.
Note that ψ implies the ordering xℓ ≥ xℓ−1 ≥ · · · ≥ x1. By induction on j from 1 to ℓ, we show that
for every expression Ej of the form hj · 2xj +

∑j−1
i=1 ai · 2xi + µ · y + µ · d, with |hj | ≤ 4(ℓ−j+1)M ,

there is an expression E′j such that ψ implies (Ej ∼ 0 ⇐⇒ E′j ∼ 0), and E′j belongs to the set
{0, 1} ∪ {a · 2x1 + µ · y + µ · d : a ∈ [− |hj | · 4(j−1)M .. |hj | · 4(j−1)M]}. The lemma then follows from
the fact that E is an expression of the form of Em, setting am = hm; as indeed |am| ≤ 4M .

base case: j = 1. For every expression E1 of the form h1 · 2x1 +µ · y+µ · d, we can take E′1 := E1.

induction hypothesis. Given j > 1, from every Ej−1 = hj−1 ·2xj−1 +
∑j−2

i=1 ai · 2xi + µ · y + µ · d,
with |hj−1| ≤ 4(ℓ−j+2)M , there is an expression E′j−1 from the set {0, 1}∪{a ·2x1 +µ ·y+µ ·d :

a ∈ [− |hj−1| · 4(j−1)M .. |hj−1| · 4(j−1)M]}, such that ψ implies (Ej−1 ∼ 0 ⇐⇒ E′j−1 ∼ 0).

induction step: j > 1. Consider an expression Ej of the form hj ·2xj +
∑j−1

i=1 ai ·2xi +µ · y+µ ·d,
with |hj | ≤ 4(ℓ−j+1)M . If hj = 0, then we directly obtain E′j by applying the induction
hypothesis on the expression

∑j−1
i=1 ai · 2xi + µ · y + µ · d, since from the assumption on M in

the statement of the lemma, we have |aj−1| ≤ 4M . Below, let us assume then that hj ̸= 0.
We distinguish two cases, depending on whether the constraint xj ∼j−1 xj−1 + di occurring
in ψ is of the form xj ≥ xj−1 +M or xj = xj−1 + g for some g ∈ [0..M − 1].

case: xj ≥ xj−1 +M occurs in ψ. Intuitively, in this case ψ is constraining xj to be so large
comparatively to xj−1 that, in any solution to ψ, Ej ̸= 0 and the sign of Ej is solely
dictated by the sign of hj . When ∼ from E ∼ 0 is the equality symbol, we can pick
E′j = 1, making E′j ∼ 0 unsatisfiable. When ∼ is instead ≤, we set E′j = 0 if hj is
negative, and E′j = 1 otherwise. To show that hj dictates the sign of Ej , it suffices to

establish that ψ implies 2xj >
∣∣∣∑j−1

i=1 ai · 2xi + µ · y + µ · d
∣∣∣. First, note that ψ implies

2xj ≥ 2M ·2xj−1 . As M ≥ d and ψ implies both xj−1 ≥ · · · ≥ x1 and |y| ≤ k ·2x1 , we have∣∣∣∑j−1

i=1
ai · 2xi + µ · y + µ · d

∣∣∣ ≤ ∑j−1

i=1
|ai| 2xi + |µ · y|+ µ · d

≤
(∑j−1

i=1
|ai|+ k · µ+M · µ

)
· 2xj−1 .

Therefore, it suffices to show that 2M >
∑j−1

i=1 |ai| + k · µ +M · µ; or equivalently that
2M − M · µ >

∑j−1
i=1 |ai| + k · µ. Since M ≥ 4 log2(µ) + 8, by Lemma 10 we have

2M −M · µ ≥ 2M/2. Then, by M > 2 · log2(
∑ℓ

i=1 |ai|+ k · µ),

2M − µ ·M ≥ 2M/2 > 2⌈log2(
∑
|ai|+k·µ)⌉ ≥

∑j−1

i=1
|ai|+ k · µ.

case: xj = xj−1 + g occurs in ψ. Let Ej−1 be the expression obtained from Ej by replacing
2xj by 2g · 2xj−1 ; that is, Ej−1 = (hj · 2g + aj−1) · 2xj−1 +

∑j−2
i=1 ai · 2xi + µ · y + µ · d.

We have ψ implies (Ej ∼ 0 ⇐⇒ Ej−1 ∼ 0). To conclude the proof, it suffices to
prove that the induction hypothesis can be applied to Ej−1. This is the case as soon as

25

Section 4.2: The monotone decomposition (proof of Proposition 3)

|hj · 2g + aj−1| ≤ 4(ℓ−j+2)M holds, which we show below:

|hj · 2g + aj−1| ≤ |hj | · 2g + |aj−1|
≤ 4(ℓ−j+1)M · 2M + 2M Hbounds on |hj |, g and MI

≤ 22(ℓ−j+1)M+2M Hrecall: M ≥ 8I

≤ 4(ℓ−j+2)M .

The set of possible expressions E′ appearing in the conclusion of Lemma 11 can be significantly
reduced by noticing that if the absolute value of the integer a exceeds µ · (k + d), then the truth of
E′ ∼ 0 becomes independent of the value given to x1. This observation allows us to eliminate the
polynomial dependence of a on the magnitude of the coefficients a1, . . . , aℓ in the original expression
E. Although not obvious, it turns out that this plays a critical point in the proof of Theorem 1.
Retaining values of a with polynomial dependence on a1, . . . , aℓ would cause the integers in the
LEAC constructed by OptILEP to grow polynomially within each variable elimination step. As a
result, their bit sizes would become exponential by the end of the procedure. (In the proof of Propo-
sition 3, we will apply Lemma 11 using a value for the integer d that depends only logarithmically
on a1, . . . , aℓ; hence, the resulting values of a do in fact retain a logarithmic dependence on these
coefficients.) The next lemma gives the refined set of expressions E′.

Lemma 12. Let the expression E, the non-negative integers µ, d, M and k, the formula ψ, and the
symbol ∼ be defined as in Lemma 11. Let b := µ · (k + d). There is an expression E′ from the set
{0, 1} ∪ {a · 2x1 + µ · y + µ · d : a ∈ [−b..b]} such that the formula ψ implies (E ∼ 0 ⇐⇒ E′ ∼ 0).

Proof. Following Lemma 11, it suffices to take E′ to be an expression of the form a ·2x1 +µ ·y+µ ·d,
where a ∈ [−4ℓ·M ..4ℓ·M], and show that if a lies outside [−b..b], then E′ can be rewritten to 0 or 1.

From its definition, ψ implies |µ · y + µ · d| ≤ µ · (k+d) ·2x1 . Hence, as soon as |a| > b, the truth
of E′ ∼ 0 is determined by the sign of a. In particular, whenever ∼ is the symbol =, or when a > 0,
the expression E′ can be replaced with 1; that is, in this case ψ implies ¬(E′ ∼ 0). Otherwise, E′

can be replaced with 0; and in this case ψ implies E′ ∼ 0.

Proof of Proposition 3. We are now ready to prove Proposition 3. While long, the proof is
divided in several steps and claims. An intuition of the construction is given after defining various
objects required for the proof; see the paragraph titled “Construction of ψ1, . . . , ψs: some intuition”.

Proof. Throughout the proof, we let φ := ⟨γ ; ψ⟩. Let X be the set of all variables appearing in
q[ℓ,k], rk, x0, . . . , xn−k and u. Remark that all variables occurring in φ are among the set X. The
value C[xm](ν) of objective function C[xm] is defined for every map ν : X → N, and corresponds
to the value taken by xm when evaluating C on ν. During the proof, we refer to the variable qn−ℓ
simply as q. By the definition of Iℓk, the variable q appears linearly in γ and does not appear in ψ.
Thus, by Lemma 7 the set of solutions to φ is (q, p)-periodic, where p = mod(q, γ) = mod(q, φ).

Let us begin by considering the (corner) case where xm satisfies n− k ≥ m. When n− k > m,
the variable xm does not occur in C. Consequently, the function C[xm] is constant in the variable q
(that is, for any solution ν : X → N to φ, the function C[xm] is constant on maps of the form
ν + [q 7→ j] for j ∈ Z). Similarly, when m = n − k, the circuit C assigns to the variable xm the
expression qn−k · 2xn−k−1 + rn−k. As all involved variables (qn−k, xn−k−1 and rn−k) belong to X
and are distinct from q, once again we obtain that the function C[xm] is constant in the variable q.
We conclude that if m ≤ n − k, then C[xm] is (q, p)-monotone locally to φ. By Lemma 8, for a
monotone decomposition it thus suffices to take a single set R1 given by the set of solutions to φ.

26

Section 4.2: The monotone decomposition (proof of Proposition 3)

In the remaining of the proof, we assume that xm satisfiesm > n−k. This means that C contains
an assignment to xm, and that xm is not xn−k. We will construct a sequence of linear-exponential
programs ψ1, . . . , ψs satisfying the following conditions:

I. The formula φ ∧ φ[q + p / q] implies ψ1 ∨ · · · ∨ ψs.

II. C[xm] is (q, p)-monotone locally to (the solutions of) φ ∧ φ[q + p / q] ∧ ψi, for every i ∈ [1..s].

III. Each ψi is of the form
∧ni
j=1 ψi,j , where every ψi,j is an inequality with the following property.

Let ψi,j be τ ≤ 0 (and note that then −τ−1 ≤ 0 is equivalent to ¬ψi,j). If q occurs in ψi,j , both
τ and −τ−1 are terms returned by a non-deterministic branch of the execution of Algorithm 2
with respect to C, γ and p. (This is as required in the statement of the proposition; remark
also that in φ ∧ φ[q + p / q], all constraints featuring q are from γ ∧ γ[q + p / q].)

Then, the desired (q, p)-monotone decomposition R1, . . . , Rt is given by the formulae in the set{
φ ∧ φ[q + p / q] ∧ ψi : i ∈ [1..s]

}
∪
{
φ ∧

∧s

i=1
¬ψi,f(i) : f ∈ G

}
,

where G is the set of all function f : [1..s] → N such that f(i) ∈ [1..ni] for every i ∈ [1..s]. Indeed,
the function C[xm] is (q, p)-monotone locally to the formula φ ∧ ¬φ[q + p / q], and so also locally
to any formula φ ∧

∧s
i=1 ¬ψi,f(i); as the latter implies the former by Item I. Additionally, the sets

of solutions of all the formulae φ ∧ φ[q + p / q] ∧ ψi and φ ∧
∧s
i=1 ¬ψi,f(i) are (q, p)-periodic, since q

occurs linearly in these formulae, and none of the ψi contains any divisibility constraints. (A side
remark: the number of formulae ψ1, . . . , ψs will be exponential in the size of φ, making the number
of constraints in each formula

∧s
i=1 ¬ψi,f(i) also exponential. As explained in Remark 2, this is

unproblematic: to eliminate q, it suffices to guess a single constraint from any of these formulae.)

Construction of ψ1, . . . , ψs: a preliminary step. We begin by introducing an ℓ-LEAC C+p

that will be associated to the formula φ[q + p / q]. We define C+p as the ℓ-LEAC obtained from C
by replacing q with q+p, and renaming to v every variable v among qn−ℓ+1, . . . , qn, xn−k+1, . . . , xn.
These are the variables to which C assigns an expression, and whose value may depend on the value
given to q. To clarify, if C is defined as

qn−i ←
τn−i
η

for i from ℓ− 1 to 0,

xn−i ←
∑k

j=i+1 ai,j · 2xn−j

µ
+ qn−i · 2xn−k−1 + rn−i for i from k to 0,

then C+p is defined as

qn−i ←
τn−i[q + p / q]

η
for i from ℓ− 1 to 0,

xn−k ← qn−k · 2xn−k−1 + rn−k,

xn−i ←
ai,k · 2xn−k +

∑k−1
j=i+1 ai,j · 2xn−j

µ
+ qn−i · 2xn−k−1 + rn−i for i from k − 1 to ℓ+ 1

xn−ℓ ←
aℓ,k · 2xn−k +

∑k−1
j=i+1 aℓ,j · 2xn−j

µ
+ (qn−ℓ + p) · 2xn−k−1 + rn−i

xn−i ←
ai,k · 2xn−k +

∑k
j=i+1 ai,j · 2xn−j

µ
+ qn−i · 2xn−k−1 + rn−i for i from ℓ− 1 to 0.

27

Section 4.2: The monotone decomposition (proof of Proposition 3)

To simplify the presentation, we introduce the symbolic aliases:

(z1, . . . , z2k+1) := (xn, xn−1, . . . , xn−k+1, xn, xn−1, . . . , xn−k+1, xn−k),

(y1, . . . , y2k+1) := (qn, qn−1, . . . , qn−k+1, qn, qn−1, . . . , qn−ℓ+1, (qn−ℓ + p), qn−ℓ−1 . . . , qn−k),

(s1, . . . , s2k+1) := (rn, rn−1, . . . , rn−k+1, rn, rn−1, . . . , rn−k+1, rn−k).

For every j ∈ [1..k] (resp. j ∈ [k + 1..2k]), the variables yj and sj represent the quotient and
remainder variables occurring in the expression assigned to zj in C (resp. C+p). Note that both
C and C+p include the assignment xn−k ← qn−k · 2xn−k−1 + rn−k, which, using of our aliases, is
expressed as z2k+1 ← y2k+1 · 2xn−k−1 + s2k+1. Additionally, we introduce symbolic aliases for all
variables to which C or C+p assign an expression:

(w1, . . . , w2(k+ℓ)+1) := (z1, . . . , zk, y1, . . . , yℓ︸ ︷︷ ︸
assigned in C

, zk+1, . . . , z2k, yk+1, . . . , yk+ℓ︸ ︷︷ ︸
assigned in C+p

, z2k+1︸ ︷︷ ︸
a.k.a. xn−k

).

For j ∈ [1..2(k+ ℓ)+1], let ρj denote the expression assigned to the variable wj in either C or C+p.
Since xn−k is the only variable shared between the two circuits, the definition of ρj is unambiguous.
In particular, ρ2(k+ℓ)+1 corresponds to the expression qn−k · 2xn−k−1 + rn−k.

Recall that φ implies the formula Ψ(C) defined as

Ψ(C) := 0 ≤ rk < 2xn−k−1 ∧ ∃q[0,ℓ−1] :
(
0 ≤ qk · 2xn−k−1 + rk < 2xn−k ∧

∃xn−k+1 . . . ∃xn
(
θ ∧

∧k+ℓ
i=1 (wi = ρi) ∧ (w2(k+ℓ)+1 = ρ2(k+ℓ)+1)

))
.

Similarly, it is simple to see that φ[q + p / q] implies the formula Ψ(C+p) defined as

Ψ(C+p) := 0 ≤ rk < 2xn−k−1 ∧ ∃q[0,ℓ−1] :
(∧ℓ−1

j=0

(
0 ≤ qn−j · 2xn−k−1 + rn−j < 2xn−k

)
∧(

0 ≤ q · 2xn−k−1 + p · 2xn−k−1 + rn−ℓ < 2n−k
)
∧∧k

j=ℓ+1

(
0 ≤ qn−j · 2xn−k−1 + rn−j < 2xn−k

)
∧

∃xn−k+1 . . . ∃xn
(
θ ∧

∧2(k+ℓ)+1
i=k+ℓ+1 (wi = ρi)

))
,

where θ := 2xn ≥ · · · ≥ 2xn−k+1 ≥ 2xn−k ≥ · · · ≥ 2x0 = 1. To show that φ[q + p / q] implies Ψ(C+p),
observe that (φ[q + p / q] =⇒ Ψ(C+p)) is syntactically equal to (φ =⇒ Ψ(C))[q + p / q], except
for the names used for the existentially quantified variable. Specifically, every such variable v in
Ψ(C) is replaced with v in Ψ(C+p). Since (φ =⇒ Ψ(C)) is a valid formula, and validity is preserved
under substitution and variable renaming, it follows that (φ[q + p / q] =⇒ Ψ(C+p)) is also valid.

The following claim establishing further properties of C+p[xm] follows directly from the fact that
C+p is obtained from C by replacing with q + p all occurrences of the variable q.

Claim 1. Let ν and ν + [q 7→ p] be two solutions to φ. Then, C[xm](ν + [q 7→ p]) = C+p[xm](ν).

Construction of ψ1, . . . , ψs: mixing xs and xs into a single ordering. Before giving some
more intuition on the construction of ψ1, . . . , ψs, we need some additional formulae manipulations.
Let w denote the vector of all variables that appear quantified in the formulae Ψ(C) or Ψ(C+p).
Specifically, these are the variables w1, . . . , w2(k+ℓ) (note that w2(k+ℓ)+1 = xn−k is a free variable

28

Section 4.2: The monotone decomposition (proof of Proposition 3)

in both formulae). Observe that, by the definition of Ψ(C) and Ψ(C+p), the linear-exponential
program φ ∧ φ[q + p / q] implies

∃w : (xn ≥ xn−1 ≥ · · · ≥ xn−k) ∧ (xn ≥ xn−1 ≥ · · · ≥ xn−k+1 ≥ xn−k) ∧
∧2(k+ℓ)+1

i=1
(wi = ρi). (6)

Let us denote with P the set of all permutations σ : [1..2k + 1] → [1..2k + 1] (on the indices of
the variables z1, . . . , z2k+1) that satisfy:

• σ−1(1) ≤ σ−1(2) ≤ · · · ≤ σ−1(k), i.e., σ respects the ordering xn ≥ · · · ≥ xn−k+1.

• σ−1(k + 1) ≤ σ−1(k + 2) ≤ · · · ≤ σ−1(2k), i.e., σ respects the ordering xn ≥ · · · ≥ xn−k+1.

• σ(2k + 1) = 2k + 1, i.e., the variable xn−k is smaller or equal than any other variable.

The formula in Equation (6) is equivalent to
∨
σ∈P χσ, where χσ is defined as

χσ := ∃w : (zσ(1) ≥ zσ(2) ≥ · · · ≥ zσ(2k) ≥ zσ(2k+1)) ∧
∧2(k+ℓ)+1

i=1
(wi = ρi). (7)

Construction of ψ1, . . . , ψs: some intuition. We are now ready to provide the promised in-
tuition behind the construction of ψ1, . . . , ψs. Since χσ includes the equations

∧2(k+ℓ)+1
i=1 (wi = ρi),

which describe the assignments in the circuits C and C+p, for every solution to φ ∧ φ[q + p / p]
there is one and only one assignment to the variables in w that yields a solution to the quantifier-
free part of the formula in Equation (7). This assignment is determined by the values computed
by the circuits C and C+p. The order that σ induces on the variables z1, . . . , z2k+1 implies either
xm ≥ xm or xm ≥ xm. Therefore, by relying on Claim 1, one concludes that the function C[xm] is
(q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χσ:

Claim 2. Proof in
page 94

For every σ ∈ P, the function C[xm] is (q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χσ.

Clearly, we cannot use the formulae χσ as the desired formulae ψ1, . . . , ψs, as these formulae are
quantified over variables not occurring in φ (we will thus go against our goal of achieving variable
elimination). Instead, we will further refine and manipulate the ordering in Equation (7) and, by
appealing to Lemma 11, restate it solely in terms of variables that occur (free) in φ. This will
allow us to push the ordering outside the scope of the quantifiers ∃w, leading to formulae of the
form ψ ∧ ∃w

∧2(k+ℓ)+1
i=1 (wi = ρi). Next, we will show that the function C[xm] is (q, p)-monotone

locally to φ ∧ φ[q + p / q] ∧ ψ ∧ ∃w
∧2(k+ℓ)+1
i=1 (wi = ρi). Since ∃w

∧2(k+ℓ)+1
i=1 (wi = ρi) is implied by

φ∧φ[q+ p / q], this ensures that C[xm] is (q, p)-monotone locally to φ∧φ[q+ p / q]∧ψ, as required
by Item II. Moreover, because of how these formulae are constructed, the disjunction over all such
formulae ψ will still be implied by φ ∧ φ[q + p / q], fulfilling Item I. Finally, we will manipulate ψ
to meet the structural requirements of Item III.

Construction of ψ1, . . . , ψs. We start by further refining the orderings induced by the per-
mutations in P by quantifying the gaps between variables. Let D be the set of all functions
d : [1..2k]→ [0..M], where M := 4 · ⌈log2(2 · ξC + µC)⌉ + 8. For g ∈ [0..M − 1], we write ∼g as
an alias for =, and ∼M as an alias for ≥. For σ ∈ P, the formula χσ in Equation (7) is equivalent
to the formula

∨
d∈D χσ,d where

χσ,d := ∃w :
∧2k

j=1

(
zσ(j) ∼d(j) zσ(j+1) + d(j)

)
∧
∧2(k+ℓ)+1

i=1
(wi = ρi). (8)

29

Section 4.2: The monotone decomposition (proof of Proposition 3)

Essentially, every constraint zσ(j) ≥ zσ(j+1) from χσ is refined in χσ,d to either zσ(j) ≥ zσ(j+1)+M
or zσ(j) = zσ(j+1)+g, for some g ∈ [0..M−1]. Note that each χσ,d implies χσ. Therefore, by Claim 2,
the function C[xm] is (q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χσ,d. Furthermore, the formula
φ ∧ φ[q + p / q] implies

∨
σ∈P

∨
d∈D χσ,d.

Let σ ∈ P and d ∈ D. The next step of the proof involves manipulating the constraints
zσ(j) ∼d(j) zσ(j+1)+d(j) from the formula χσ,d. This manipulation produces a formula χ′σ,d in which
these constraints only feature variables from φ. Moreover, φ∧φ[q+ p / q] implies (χσ,d ⇐⇒ χ′σ,d).
The value of M introduced when defining χσ,d was chosen to make this manipulation possible by
appealing to Lemma 11. The core step in this manipulation is given in the next claim.

Claim 3. Let σ ∈ P and d ∈ D. The formula φ ∧ φ[q + p / q] implies

∀w
(∧2(k+ℓ)+1

i=1
(wi = ρi) =⇒

(∧2k

j=1

(
zσ(j) ∼d(j) zσ(j+1) + d(j)

)
⇐⇒

∧2k

j=1
(0 ∼d(j) Ej)

))
,

where each Ej (with j ∈ [1..2k]) is 0, 1, or an expression of the form

a · 2xn−k + µC ·
(
(yσ(j+1) − yσ(j)) · 2xn−k−1 + (sσ(j+1) − sσ(j))

)
+ µC · d(j), (9)

for some a ∈ [−b..b], where b := µC · (1 +M).

Proof of Claim 3. The proof is by induction on t from 2k+1 to 1, with induction hypothesis stating
that φ ∧ φ[q + p / q] implies ∀w

(∧2(k+ℓ)+1
i=1 (wi = ρi) =⇒ Γ

(t)
σ,d

)
, where Γ

(t)
σ,d is defined as∧2k

j=t

(
zσ(j) ∼d(j) zσ(j+1) + d(j)

)
⇐⇒

∧2k

j=t
(0 ∼d(j) Ej), (10)

for some suitable expressions Ej having the form described in the statement of the claim.

base case: t = 2k + 1. This case is trivial, as Γ
(2k+1)
σ,d is defined as the tautology (⊤ ⇐⇒ ⊤).

induction hypothesis. For t ∈ [1..2k], φ∧φ[q+p / q] implies ∀w(
∧2(k+ℓ)+1
i=1 (wi = ρi) =⇒ Γ

(t+1)
σ,d).

induction step: t < 2k + 1. From the induction hypothesis, φ ∧ φ[q + p / q] implies

∀w
(∧2(k+ℓ)+1

i=1
(wi = ρi) =⇒

(∧2k

j=t

(
zσ(j) ∼d(j) zσ(j+1) + d(j)

)
⇐⇒∧2k

j=t+1

(
0 ∼d(j) Ej

)
∧ zσ(t) ∼d(t) zσ(t+1) + d(t)

))
, (11)

for some suitable expressions Ej adhering to the form described in the statement of the claim.

We construct Et by modifying the formula in Equation (11), specifically by only updating the
boxed occurrence of (zσ(t) ∼d(t) zσ(t+1) + d(t)) that appears on the right-hand side of the double
implication. After all manipulations, the resulting formula is still implied by φ ∧ φ[q + p / q].

We rewrite the boxed constraint (zσ(t) ∼d(t) zσ(t+1)+ d(t)) by replacing the variables zσ(t) and
zσ(t+1) with the corresponding expressions featured in the antecedent

∧2(k+ℓ)+1
i=1 (wi = ρi) of

the implication in Equation (11). Specifically, if wi1 is an alias of zσ(t) and wi2 is an alias of
zσ(t+1), then we replace zσ(t) by ρi1 and zσ(t+1) by ρi2 . By the definition of C and C+p, the
result is a constraint (0 ∼d(t) E) where E is of the form

2k+1∑
i=t+1

ai · 2zσ(i) + µC ·
(
(yσ(t+1) − yσ(t)) · 2xn−k−1 + (sσ(t+1) − sσ(t))

)
+ µC · d(t), (12)

30

Section 4.2: The monotone decomposition (proof of Proposition 3)

where every
∑2k+1

i=t+1 |ai| is bounded, in absolute value, by 2 · ξC .

After the updates, the formula in Equation (11) is still implied by φ∧φ[q+ p / q]. Because of
the induction hypothesis, to show this it suffices to see that

• wi1 = ρi1 ∧ wi2 = ρi2 ∧ (zσ(t) ∼d(t) zσ(t+1) + d(t)) implies (0 ∼d(t) E), and

• wi1 = ρi1 ∧ wi2 = ρi2 ∧ ¬(zσ(t) ∼d(t) zσ(t+1) + d(t)) implies ¬(0 ∼d(t) E).

Both these implications follows trivially from how E is constructed.

We further manipulate the expression E from Equation (12). The following three facts hold:

• The right-hand side of the double implication of the updated formula from Equation (11),
now featuring (0 ∼d(t) E), implies (because of the double implication) the constraints(
zσ(i) ∼d(i) zσ(i+1) + d(i)

)
for every i ∈ [t+ 1..2k].

• Since φ ∧ φ[q + p / q] implies the formula in Equation (11), we can bound the term(
(yσ(t+1) − yσ(t)) · 2xn−k−1 + (sσ(t+1) − sσ(t))

)
occurring in E as follows:

−2xn−k <
(
(yσ(t+1) − yσ(t)) · 2xn−k−1 + (sσ(t+1) − sσ(t))

)
< 2xn−k . (13)

Indeed, from the definition of Ψ(C) and Ψ(C+p), for both j ∈ {σ(t), σ(t+ 1)}, we have:

– If C and C+p do not assign an expression to y, then the formula φ ∧ φ[q + p / q]
implies 0 ≤ yj · 2xn−k−1 + sj < 2xn−k .

– If C or C+p assign an expression ρ to yj , then the formula φ ∧ φ[q + p / q] implies
∃yj (0 ≤ yj · 2xn−k−1 + sj < 2xn−k ∧ yj = ρ). In this case, observe that since yj is (an
alias of) a quotient variable among qn, . . . , qn−ℓ+1, qn, . . . , qn−ℓ+1, the expression ρ
only contains variables occurring in φ (and it does not contain yj). Consequently,
the value of yj is uniquely determined given a solution to φ∧φ[q+p / q]. This means
that φ ∧ φ[q + p / q] also implies ∀yj (yj = ρ =⇒ 0 ≤ yj · 2xn−k−1 + sj < 2xn−k).

We conclude that φ ∧ φ[q + p / q] implies

∀w
(∧2(k+ℓ)+1

i=1
(wi = ρi) =⇒

∧
j∈{σ(t),σ(t+1)}

0 ≤ yj · 2xn−k−1 + sj < 2xn−k

)
,

which allows us to bound (yσ(t+1)− yσ(t)) · 2xn−k−1 +(sσ(t+1)− sσ(t)) as in Equation (13).

• The integer M used to define the map d satisfies

M ≥ max
(
1 + 2 · log2

(∑2k+1

i=t+1
|ai|+ µC

)
, 4 · log2(µC) + 8, d(t)

)
.

Due to the three items above, we can invoke Lemma 11 and Lemma 12 to rewrite E as an
expression that is either 0 or 1, or has the form

a · 2xn−k + µC ·
(
(yσ(t+1) − yσ(t)) · 2xn−k−1 + (sσ(t+1) − sσ(t))

)
+ µC · d(t),

for some a ∈ [−b..b], where b := µC · (1 +M). This completes the proof of the claim.

Resuming the proof of Proposition 3, from the chain of equivalences involving Equations (6)
to (8) and by applying Claim 3, we see that φ ∧ φ[q + p / q] implies

∨
σ∈P

∨
d∈D χ

′
σ,d where

χ′σ,d := ∃w :
∧2k

j=1
(0 ∼d(j) Eσ,d,j) ∧

∧2(k+ℓ)+1

i=1
(wi = ρi), (14)

31

Section 4.2: The monotone decomposition (proof of Proposition 3)

and each Eσ,d,j is an expression having one of the forms given in Claim 3. (Below, we simply
write Ej instead of Eσ,d,j , as σ and d will be clear from the context.) Moreover, as a consequence
of Claim 2, the function C[xm] is (q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χ′σ,d.

Given σ ∈ P and d ∈ D, we further manipulate the formula χ′σ,d. We consider every expression
Ej of the form a · 2xn−k +µC ·

(
(yσ(j+1)− yσ(j)) · 2xn−k−1 +(sσ(j+1)− sσ(j))

)
+µC · d(j). Let us write

Lσ,d,j and Rσ,d,j (again, we omit σ and d for simplicity) for the two expressions:

Lj := a · u+ µC · (yσ(j+1) − yσ(j)), Rj := µC · (sσ(j+1) − sσ(j)) + µC · d(j).

Recall that φ occurs in Ik, and therefore it features the equality u = 2xn−k−xn−k−1 ; so φ∧φ[q+p / q]
implies ∀w : Ej = Lj · 2xn−k−1 +Rj . Moreover, from the definition of Ψ(C), we see that φ implies
(0 ≤ sσ(j) < 2xn−k−1) and (0 ≤ sσ(j+1) < 2xn−k−1). We then conclude that φ ∧ φ[q + p / q] implies
−µC · 2xn−k−1 < Rj < (µC +1) ·M · 2xn−k−1 . Given r ∈ [−µC ..(µC +1) ·M], we write γσ,d,j,r (often
omitting σ and d, as they will be clear from the context) for the formula given by:

• if ∼d(j) stands for =, then γj,r :=
(
Lj + r = 0 ∧Rj = r · 2xn−k−1

)
, and,

• if ∼d(j) stands for ≥, then γj,r :=
(
Lj + r ≤ 0 ∧ (r − 1) · 2y < Rj ≤ r · 2y

)
.

From Lemma 3, φ ∧ φ[q + p / q] implies ∀w
(
(0 ∼d(j) Ej) ⇐⇒

∨(µC+1)·M
r=−µC γj,r

)
.

We further update the expressions Lj + r above by updating yσ(j) and yσ(j+1) using the corre-
sponding expressions featured in the formula

∧2(k+ℓ)+1
i=1 (wi = ρi), if such expressions exist. That is,

if a variable wi in this formula is an alias for yσ(j), then we consider the substitution [ρiλ / µC ·yσ(j)],
where λ := ηC

µC
. Since (C,φ) ∈ Iℓk, we know that µC divides ηC , hence λ is a positive integer.

Observe moreover that in Lj , the variables yσ(j) and yσ(j+1) have a coefficient of ±µC ; this means
that applying the substitution [ρiλ / µC · yσ(j)] eliminates yσ(j). If no variable wi is an alias for yσ(j),
we consider instead the substitution [

ηC ·yσ(j)

λ / µC · yσ(j)] (applying this substitution to Lj + r sim-
ply scales all coefficients by λ). Observe that these substitutions are among those constructed in
lines 4 and 6 of Algorithm 4. We handle yσ(j+1) analogously, and simultaneously apply the resulting
substitutions to Lj + r. Let L′j,r be the resulting expression. It is of the form

λ · a · u+ τ(u, q[ℓ,k]) + λ · r (15)

where τ(u, q[ℓ,k]) is a difference τ ′ − τ ′′ of two terms τ ′ and τ ′′ having forms among the following:

• a variable ηC · qn−i with i ∈ [ℓ..k]; note that these variables occurs free in Ψ(C) and Ψ(C+p),

• the expression ηC · (q + p); note that (q + p) is aliased by one of the variables y1, . . . , y2k+1,
and that no expression in C and C+p is assigned to q.

• the term τn−i, for some i ∈ [0..ℓ− 1], which occurs in C in the expression assigned to qn−i,

• the term τn−i[q+ p / q], for some i ∈ [0..ℓ− 1], which occurs in C+p in the expression for qn−i.

Lastly, let γ′j,r be the formula obtained from γj,r by replacing Lj+r with L′j,r, and rewriting L′j,r = 0
as L′j,r ≤ 0 ∧−L′j,r ≤ 0. Note that no variable from γ′j,r occurs in the vector w. We are now in the
position of establishing the following two results, which almost complete the proof of Proposition 3.

Claim 4. The formula φ ∧ φ[q + p / q] implies
∨
σ∈P

∨
d∈D

∧2k
j=1

∨(µC+1)·M
r=−µC γ′σ,d,j,r.

Claim 5. For every σ ∈ P and every d ∈ D, the function C[xm] is (q, p)-monotone locally to the
set of solutions of the formula φ ∧ φ[q + p / q] ∧

∧2k
j=1

∨(µC+1)·M
r=−µC γ′σ,d,j,r.

32

Section 5: An efficient variable elimination that preserves optimal solutions

Proof of Claims 4–5. We have already established that:

1. The formula φ ∧ φ[q + p / q] implies
∨
σ∈P

∨
d∈D χ

′
σ,d, where χ′σ,d is as in Equation (14).

2. For every σ ∈ P and d ∈ D, φ ∧ φ[q + p / q] implies ∀w
(
(0 ∼d(j) Ej) ⇐⇒

∨(µC+1)·M
r=−µC γj,r

)
.

3. The function C[xm] is (q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χ′σ,d.

Every formula γ′j,r is obtained from γj,r by “applying” the equalities from
∧2(k+ℓ)+1
i=1 (wi = ρi) as

substitutions. Together with Item 2 above, we thus conclude that χ′σ,d is equivalent to

∃w :
((∧2k

j=1

∨(µC+1)·M

r=−µC
γ′j,r

)
∧
∧2(k+ℓ)+1

i=1
(wi = ρi)

)
.

The variables w do not occur in any formula γ′j,r, and so the above formula is equivalent to(∧2k

j=1

∨(µC+1)·M

r=−µC
γ′j,r

)
∧ ∃w :

∧2(k+ℓ)+1

i=1
(wi = ρi).

The two claims then follows from Items 1 and 3, together with the fact that the formula φ∧φ[q+p / q]
implies Ψ(C) ∧Ψ(C+p), which in turn implies ∃w

∧2(k+ℓ)+1
i=1 (wi = ρi) by definition.

At last, let us define the formulae ψ1, . . . , ψs. They correspond to all the linear-exponential
systems occurring as disjuncts of the disjunctive normal form of the formulae

∧2k
j=1

∨(µC+1)·M
r=−µC γ′σ,d,j,r,

for every σ ∈ P and d ∈ D. Directly from Claim 4 and Claim 5, we conclude that these formulae
satisfy the desired conditions in Items I and II. To complete the proof, it suffices to show that the
condition in Item III is also satisfied.

Every constraint occurring in the formulae ψ1, . . . , ψs that features the variable q is of the form
±L′σ,d,j,r ≤ 0, where L′σ,d,j,r is an expression as in Equation (15). Therefore, the term ±L′σ,d,j,r is of
the form λ · a′ · u+ τ ′(u, q[ℓ,k]) + λ · r′ where

• a′ ∈ Z belongs to the set [−µC ·(1+M)..µC ·(1+M)]. (Recall: M := 4·⌈log2(2 · ξC + µC)⌉+8.)

• τ ′(u, q[ℓ,k]) is the term obtained from (yσ(j+1)− yσ(j)) or (yσ(j)− yσ(j+1)) by applying suitable
substitutions. These are among the substitutions considered in lines 4–7 of Algorithm 2.

• r′ ∈ Z belongs to [−(µC + 1) ·M..(µC + 1) ·M].

Note that ¬(±L′σ,d,j,r ≤ 0) is equivalent to ∓L′σ,d,j,r+1 ≤ 0. Then, in order to cover ¬(±L′σ,d,j,r ≤ 0)
with terms λ · a′ · u+ τ ′(u, q[ℓ,k]) + λ · r′ as above, it suffices to increase the interval for the integers
r′ to [−(µC + 1) ·M − 1..(µC + 1) ·M + 1]. It is then easy to see that Item III holds. In fact, for
simplicity of the presentation, Algorithm 2 uses slightly larger ranges for a′ and r′ (these integers
are called a and d in the pseudocode, respectively, see line 1). Indeed, since µC ≥ 1 and M ≥ 8,
both µC · (1 +M) and (µC + 1) ·M + 1 are bounded by 3 · µC ·M .

5 An efficient variable elimination that preserves optimal solutions

Building on our monotone decomposition, this section instantiates Algorithm 1 (ElimVars) into
the optima-preserving variable elimination procedure that was promised in Section 2.2. We also
provide the proofs of correctness and complexity of this algorithm.

The pseudocode of the instantiation of ElimVars is given on page 35. The instantiation is
obtained by (i) defining the inputs of ElimVars, (ii) providing an algorithm for computing the
test points and (iii) implementing the elimination discipline. Following the arguments in Section 4,
achieving the first two points is simple. In particular, appealing to the notation from Section 4:

33

Section 5.1: Efficient elimination discipline: the high-level idea

• The inputs of ElimVars are triples (qk−1, C[xm], ⟨γ ; ψ⟩), for every k ∈ [0..n − 1], where
(C, ⟨γ ; ψ⟩) belongs to I0k . (The procedure will thus eliminate the variables qn−k+1, . . . , qn,
but not the variable qn−k. This is consistent with the sketch of the procedure from [CMS24]
given in Section 2, where the latter variable is eliminated only after Step III.)

• The pseudocode of the procedure for computing the test points is given in Algorithm 4.
Briefly, the procedure first (non-deterministically) computes a term (a · q− τ) stemming from
the monotone decomposition of Proposition 3, and then returns an equality (a · q = τ − s),
where s is a non-negative shift that suffices to explore optimal solutions, by Lemma 9.

The implementation of an efficient elimination discipline is a more complex task. As noted in the
introduction (Example 2), the naïve approach of rewriting a formula γ as γ[τ−sa / q] ∧ (|a| | τ − s),
where (a · q = τ − s) is a test point, would lead to exponential growth in the bit length of integer
coefficients, during the execution of ElimVars. In [CMS24], this problem is avoided by extending
Bareiss’ algorithm for Gaussian elimination [Bar68] to integer linear programs. While our elimi-
nation discipline is also based on Bareiss’ algorithm, it is different from the one in [CMS24]. In
particular, we do not introduce “slack variables”, and add some technical machinery to handle the
additional test points required by the monotone decomposition (those computed by Algorithm 2).

5.1 Efficient elimination discipline: the high-level idea

The pseudocode of our elimination discipline is given in Algorithm 5. We now discuss the overall
idea behind this procedure. Consider one of its inputs: a pair (C[xm], ⟨γ ;ψ⟩), where (C, ⟨γ ;ψ⟩) ∈ Iℓk
with ℓ < k, and an equality a · qn−ℓ = τ returned by Algorithm 4 on input (qk−1, C[xm], ⟨γ ; ψ⟩).

Let us briefly explain why the naïve approach of eliminating the variable qn−ℓ from γ by perform-
ing the substitution [τa / qn−ℓ] leads to an exponential growth. Assuming a > 0, this substitution
rewrites an inequality b · qn−ℓ ≤ τ ′ as b · τ ≤ a · τ ′. Let c and d denote the coefficients of another
variable, say y, in τ and τ ′, respectively. Then, in the term b · τ − a · τ ′, the coefficient of y is
b · c− a · d. In essence, this shows that the coefficients of the variables in γ may grow quadratically
within each elimination of one of the variables in qk−1. As a result, by the end of ElimVars, the
naïve approach may produce a linear program with coefficients of exponential bit size.

The above explosion can be avoided by observing that the variable coefficient b ·c−a ·d is exactly
the one we would obtain when performing a naïve version of the Gaussian elimination procedure for
putting a matrix with entries over Z in echelon form. Building on Bareiss’s observation [Bar68], we
see that these growing variable coefficients accumulate common factors as we iteratively eliminate
variables. Divisions by these common factors after each variable elimination keep variable coefficients
of polynomial bit size. (These divisions are performed in lines 5–6 of Algorithm 5.) While variable
coefficients evolve as in Gaussian elimination, the constants of the terms do not. In particular, the
shift performed in line 3 of Algorithm 4 disrupt any structure in the constants. This however does
not pose a problem. Inequalities of the form λ · ρ + c ≤ 0 (where λ ≥ 1 is the common factor, ρ a
term, and c is the integer constant) can be rewritten as ρ +

⌈
c
λ

⌉
≤ 0. For equalities λ · ρ + c = 0

instead, observe that they are unsatisfiable when c is not a multiple of λ, and otherwise they can
be rewritten as ρ+ c

λ = 0. Algorithm 5 implements this reasoning in lines 4–6, where the positive
integer λ defined in line 2 represents the common factor. (We will clarify why this common factor
is exactly the ratio ηC

µC
of the two denominators of the (k, ℓ)-LEAC C in Section 5.4.) A similar

argument can be made for updates performed to the circuit C, by seeing each assignment q ← τ
ηC

as the equality ηC · q = τ ; see line 7 of Algorithm 5.
Further technical details must be added to the above picture to keep the complexity of OptILEP

in check. The main problem arises when Algorithm 4 produces a test point by appealing to Algo-

34

Section 5.1: Efficient elimination discipline: the high-level idea

Algorithm 3 Instantiation of ElimVars (Algorithm 1).

Input: (qk−1, C[xm], ⟨γ ;ψ⟩) : a triple such that (C, ⟨γ ;ψ⟩) belongs to I0k , for some k ∈ [0..n− 1].
1: while some variable from qk−1 appears in γ or in vars(C) do
2: (a · q = τ)← guess an element in TP(qk−1, C[xm], ⟨γ ; ψ⟩) ▷ Algorithm 4
3: (C[xm], ⟨γ ; ψ⟩)← Elim(C[xm], ⟨γ ; ψ⟩, a · q = τ) ▷ Algorithm 5
4: return (f, φ)

Algorithm 4 TP: Non-deterministic generation of the test points for ILEP.

Input: (qk−1, C[xm], ⟨γ ; ψ⟩) : a triple such that (C, ⟨γ ; ψ⟩) belongs to Iℓk, with ℓ < k.

1: p← mod(qn−ℓ, γ)
2: (a · qn−ℓ − τ)← guess a term with a ̸= 0 that is either from terms(γ ∧ γ[qn−ℓ + p / qn−ℓ]),

or computed using Algorithm 2 with respect to (C, γ, p).
3: s← guess an element in [0.. |a| · p− 1]

4: return (a · qn−ℓ = τ − s)

Algorithm 5 Elim: An efficient elimination discipline for ILEP.

Input: (C[xm], ⟨γ ; ψ⟩) : a pair such that (C, ⟨γ ; ψ⟩) ∈ Iℓk, with ℓ < k;
a · qn−ℓ = τ : an equality returned by Algorithm 4 on input (qk−1, C[xm], ⟨γ ; ψ⟩).

1: if a < 0 then (a, τ)← (−a,−τ) ▷ consider −a · qn−ℓ = −τ instead

2: λ← ηC
µC

; α← a
µC

3: γ ← γ[τα / µC · qn−ℓ] ∧ (a | τ)
4: assert(in every equality τ = 0 of γ, the constant of the term τ is divisible by λ)

▷ here and below, assert(false) causes the non-deterministic branch to reject
5: update each equality τ = 0 in γ :
• divide all integers appearing in the term τ by λ

6: update each inequality τ ≤ 0 in γ :
• divide all variable coefficients in the term τ by λ
• replace the constant c of the term τ with ⌈ cλ⌉

7: update C :
• for every i ∈ [0..ℓ− 1], consider the assignment qn−i ← τn−i

ηC
in C

− assert(the constant of the term τn−i[
τ
α / µC · qn−ℓ] is divisible by λ)

− replace qn−i ← τn−i

ηC
with qn−i ←

τ ′n−i

a , where the term τ ′n−i is obtained
from the term τn−i[

τ
α / µC · qn−ℓ] by dividing all integers by λ

• prepend the assignment qn−ℓ ← τ
a

8: return (C[xm], ⟨γ ; ψ⟩) ▷ (C, ⟨γ ; ψ⟩) belongs to Iℓ+1
k

35

Section 5.2: Correctness of ElimVars

rithm 2. Such test points depend on the assignments featured in the circuit C. This dependence
makes it challenging to maintain the delicate “Gaussian-elimination-style evolution” that variable
coefficients must have throughout ElimVars. The solution Algorithm 5 implements starts from
the observation that all non-zero coefficients of the quotient variables qk in the term in line 8 of Al-
gorithm 2 are (before substitutions) only ±µC . Together with the constraints imposed by Iℓk, which
ensure that all coefficients of the variables q[ℓ,k] are divisible by µC , this observation will enable us to
give a variation of Bareiss algorithm, from which we can prove that ElimVars, and later OptILEP,
run in non-deterministic polynomial time.

Before moving to a more technical analysis of ElimVars, let us note that the overwhelming
presence of µC in both Algorithm 2 and elements of Iℓk implies the following property of Algorithm 4:

Lemma 13. Proof in
page 98

Given in input a triple (qk−1, C[xm], ⟨γ ;ψ⟩) with (C, ⟨γ ;ψ⟩) ∈ Iℓk Algorithm 4 guesses
in line 2 a linear term a · qn−ℓ − τ(u, q[ℓ+1,k]) in which all coefficients of q[ℓ,k] are divisible by µC .

5.2 Correctness of ElimVars

The integration of the machinery from Bareiss algorithm to keep the growth of the coefficients
in check has a “presentational drawback”: the arguments for establishing the complexity of the
algorithm now mix with those needed to prove its correctness, as we must ensure that this machinery
is implemented correctly.

To ease the presentation, we structure this and the next three (Sections 5.3 to 5.5) as follows. In
the current section, we isolate the key property necessary for the correct implementation of Bareiss’s
machinery. This property is formalized in Claim 6. Assuming this claim to hold, we then establish
the correctness of ElimVars. Sections 5.3 and 5.4 develop the arguments needed to prove Claim 6,
while also setting up the properties required for the complexity analysis. More precisely, Section 5.3
presents a variation of Bareiss algorithm in which the evolution of variable coefficients precisely
mirrors that of ElimVars. We state a series of results characterizing this evolution; their proofs are
deferred to Appendix C.3 —these proofs involve a detour to linear algebra and Bareiss algorithm,
and we prefer to keep the focus of this section on ElimVars. In Section 5.4 we formalize the
connection between this variation of Bareiss algorithm and ElimVars, and use it to prove Claim 6.
Finally, in Section 5.5 we leverage this connection to analyze the complexity of ElimVars.

Here is the aforementioned key property related to Bareiss algorithm:

Claim 6. The following property is true across all the executions of Algorithm 5 performed in all
non-deterministic branches of ElimVars, on any of its inputs. In all equalities and inequalities of
the formula γ[τα / µC · qn−ℓ] computed in line 3, and in terms τn−i[τα / µC · qn−ℓ] computed in line 7,
all coefficients of the variables q[ℓ+1,k] are divisible by ηC , and all coefficients of u are divisible by ηC

µC
.

The following lemma establishes the correctness of ElimVars.

Lemma 14. There is a non-deterministic procedure with the following specification:

Input: qk−1 : the vector of quotient variables qn−(k−1), . . . , qn; (for any k)
C[xm] : objective function, where C is a (k, 0)-LEAC;
⟨γ ; ψ⟩ : linear exponential program with divisions,

such that the pair (C, ⟨γ ; ψ⟩) belongs to I0k .

Output of each branch (β): C ′β[xm] : objective function, where C ′β is a (k, k)-LEAC;
⟨γ′β ; ψ⟩ : linear exponential program with divisions,

such that (C ′β, ⟨γ′β ; ψ⟩) belongs to Ikk .

36

Section 5.2: Correctness of ElimVars

The procedure ensures the satisfaction of the following two properties:

• Equivalence: The formulae ∃qk−1 γ and
∨
β γ
′
β are equivalent. Consider a branch β, and let

qn−(k−1) ←
τn−(k−1)

η , . . . , qn ← τn
η be the assignments to the variables qk−1 occurring in C ′β.

Given a solution ν : {u, qn−k} → N to γ′β, the map ν+
∑k−1

i=0 [qn−i 7→
ν(τn−i)

η] is a solution to γ.

• Preservation of maximum: if max{C[xm](ν) : ν is a solution to ⟨γ ; ψ⟩} exists, then it is
equal to max{C ′β[xm](ν) : β is a branch, ν is a solution to ⟨γ′β ; ψ⟩}.

Proof (assuming Claim 6). By induction on ℓ = k, . . . , 0, with induction hypothesis:

induction hypothesis. The specification given in Lemma 14 holds when executing the while loop
of Algorithm 1 (ElimVars) on a triple (qk−1, C[xm], ⟨γ ;ψ⟩) where (C, ⟨γ ;ψ⟩) belongs to Iℓk.
That is to say,

• Output: the output of each branch β is (C ′β[xm], ⟨γ′β ; ψ⟩), with (C ′β, ⟨γ′β ; ψ⟩) ∈ Ikk .

• Equivalence: The formulae ∃q[ℓ,k−1]γ and
∨
β γ
′
β are equivalent. Consider a branch β,

and let qn−(k−1) ←
τn−(k−1)

η , . . . , qn−ℓ ← τn−ℓ

η be the assignments to the variables q[ℓ,k−1]

in C ′β . Given a solution ν : {u, qn−k} → N to γ′β , the map ν +
∑k−1

i=ℓ [qn−i 7→
ν(τn−i)

η] is a
solution to γ.

• Preservation of maximum: if max{C[xm](ν) : ν is a solution to ⟨γ ; ψ⟩} exists, then
it is equal to max{C ′β[xm](ν) : β is a branch, ν is a solution to ⟨γ′β ; ψ⟩}.

Observe that setting ℓ = 0 in the above induction hypothesis yields the statement of Lemma 14.

base case: ℓ = k. In this case, we have (C, ⟨γ ;ψ⟩) ∈ Ikk . By definition of Ikk (page 23) this means
that C is a (k, k)-LEAC, and γ only features the variables qn−k and u. Therefore, no variable
in qk−1 occurs in these objects, and the condition of the while loop of ElimVars fails. The
algorithm then returns (C[xm], ⟨γ ;ψ⟩), and all requirements stated in the induction hypothesis
are trivially satisfied.

induction step: ℓ ∈ [0..k − 1]. Let φ := ⟨γ ;ψ⟩. By definition of Iℓk, the linear program γ features
an inequality b · qn−ℓ ≥ 0, for some b ≥ 1. Let p := mod(qn−ℓ, γ). Since qn−ℓ belongs to
qk−1, the body of the while loop of ElimVars executes. The call to Algorithm 4 (non-
deterministically) returns an equality a · qn−ℓ = τ − s such that (i) a ̸= 0, (ii) (a · qn−ℓ− τ) is
either from terms(γ ∧ γ[qn−ℓ + p / qn−ℓ]) or it is computed using Algorithm 2 with respect to
(C, γ, p), and (iii) s ∈ [0.. |a| · p − 1]. Again by definition of Iℓk, the variables occurring in τ
are from the vector q[ℓ+1,k] = (qn−k, . . . , qn−(ℓ+1)).

From Corollary 2 (which concerns satisfiability) and Proposition 3 and Lemma 9 (which con-
cern optimization) we conclude that if φ has a solution (analogously, if (C[xm], φ) has a
maximum), then it has one satisfying an equality a · qn−ℓ = τ − s returned by Algorithm 4.
The lemma is therefore implied by the induction hypothesis (applied to elements in Iℓ+1

k)
together with the following claim (below, for brevity we write ρ instead of τ − s):

Claim 7. Given in input (C[xm], φ) and an equality a · qn−ℓ = ρ computed by Algorithm 4,
Algorithm 5 behaves as follows:

1. If the statements in the assert commands in lines 4 and 7 are not satisfied, then the
algorithm rejects. In this case the formula ∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ) is unsatisfiable.

37

Section 5.2: Correctness of ElimVars

2. Else, the algorithm returns (C ′[xm], ⟨γ′ ; ψ⟩) such that (C ′, ⟨γ′ ; ψ⟩) ∈ Iℓ+1
k . In this case:

(a) The formula ⟨γ′ ; ψ⟩ is equivalent to ∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ).
(b) Consider a solution ν : X \ {qn−ℓ} → N to ⟨γ′ ; ψ⟩, and let ν ′ := ν + [qn−ℓ 7→ ν(ρ)

a].
For each i ∈ [0..ℓ− 1], given the assignments qn−i ← τn−i

ηC
and qn−i ← τn−i

ηC′
from C

and C ′, respectively, we have ν′(τn−i)
ηC

=
ν(τ ′n−i)

ηC′
. Moreover, C ′[xm](ν) = C[xm](ν

′).

Let us prove Claim 7. Observe that line 1 rewrites the equality a ·qn−ℓ = ρ and −a ·qn−ℓ = −ρ
whenever a < 0, hence forcing the coefficient of qn−ℓ to be positive. Hence, in what follows
we assume without loss of generality that a > 0 (hence α = a

µC
in line 2 is positive).

Let us consider Item 1 of the claim. Assume that one of the assert commands in lines 4 and 7
is not satisfied. In the case of line 4, this means that an equation τ ′ = 0 from γ[ρα / µC · qn−ℓ]
is such that the constant c of τ ′ is not divisible by λ. Since λ = ηC

µC
, assuming Claim 6, τ ′ = 0

can be written as λ · τ ′′ + c = 0. But then, whenever the variables in τ ′′ are evaluated to
some integers, this equation is asserting that a multiple of λ is equal to −c; contradicting the
fact that c is not divisible by λ. This implies that γ[ρα / µC · qn−ℓ] is unsatisfiable, and thus
so is ∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ). The argument is similar when the assert command of line 7
is not satisfied. Indeed, consider i ∈ [0..ℓ − 1] such that qn−i ← τn−i

ηC
occurs in C, and the

constant of the term τn−i[
τ
α / µC · qn−ℓ] is not divisible by λ. From the definition of Iℓk (more

precisely, the definition of Ψ(C)), φ implies ∃qn−i : ηC · qn−i = τn−i, which in turn means that
∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ) implies ∃qn−i : α · ηC · qn−i = τn−i[

τ
α / µC · qn−ℓ]. By definition, λ

is a divisor of ηC . Hence, assuming Claim 6, in the equality α · ηC · qn−i = τn−i[
τ
α / µC · qn−ℓ]

all variable coefficients are divisible by λ = ηC
µC

, but the constant term is not. As in the
previous case, this means that α · ηC · qn−i = τn−i[

τ
α / µC · qn−ℓ] is unsatisfiable, and thus so is

∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ). This completes the proof of the first of the two items in Claim 7.

We move to Item 2. Assume that the assert commands in lines 4 and 7 are satisfied, and
therefore that the algorithm returns some pair (C ′[xm], ⟨γ′ ; ψ⟩). We first show that ⟨γ′ ; ψ⟩
is equivalent to ∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ). From (C, ⟨γ ; ψ⟩) ∈ Iℓk, in all (in)equality from γ
the coefficients of qn−ℓ are divisible by µC . This means that the substitution [τα / µC · qn−ℓ]
performed in line 3 eliminates qn−ℓ. Therefore, the formula γ[τα / µC · qn−ℓ] ∧ (a | τ) is
a linear program with divisions over the variables q[ℓ+1,k] and u. Clearly, this formula is
equivalent to ∃qn−ℓ : γ ∧ (a · qn−ℓ = ρ), proving Item 2a. Since ψ does not contain the
variable qn−ℓ, it thus suffices to show that transformation in lines 4–6, which produces γ′

from γ[τα / µC · qn−ℓ]∧ (a | τ), preserves formula equivalence. These lines rely on the following
two equivalences, that hold for any linear term τ ′ (since such terms evaluate to integers):

λ · τ ′ = 0 ⇐⇒ τ ′ = 0 (since λ ̸= 0)

λ · τ ′ + c ≤ 0 ⇐⇒ τ ′ +
⌈ c
λ

⌉
≤ 0 (since λ ≥ 1)

To ensure that lines 4–6 correctly implement these equivalences, we need to verify that all
divisions performed in these lines are without remainder. Assuming Claim 6, the coefficients of
the variables q[ℓ+1,k] in (in)equalities of γ[τα / µC ·qn−ℓ] are divisible by ηC , while the coefficients
of u are divisible by λ = ηC

µC
. Since the assert command of line 4 is satisfied, the constants

occurring in equalities are also divisible by λ. It follows that the divisions performed in lines 5
and 6 are without remainder. (Note that this also shows that γ′ is a linear program with
divisions in variables q[ℓ+1,k] and u.)

38

Section 5.2: Correctness of ElimVars

Next, we show that the returned pair (C ′[xm], ⟨γ′ ; ψ⟩) is such that (C ′, ⟨γ′ ;ψ⟩) ∈ Iℓ+1
k . Recall

that, by Lemma 13, the equality a ·qn−ℓ = ρ computed by Algorithm 4 is such that a ·qn−ℓ−ρ
is a linear term featuring variables u and q[ℓ,k], in which the coefficients of the variables q[ℓ,k]
divisible by µC . Below, Items (i) to (iii) refers to the items characerizing Iℓk (page 23).

• Item (i): we must prove that C ′ is a (k, ℓ+1)-LEAC such that µC′ divides ηC′ , as well as
all coefficients of the variables q[ℓ+1,k] occurring in the term τ ′n−i featured in assignments

qn−i ←
τ ′n−i

ηC′
of C ′, with i ∈ [0..ℓ].

The circuit C ′ is constructed in line 7. This line updates all assignments qn−i ← τn−i

ηC
in C,

where i ∈ [0..ℓ−1], and prepends the assignment qn−ℓ ← τ
a . The denominator of all these

assignments is ηC′ = a, which is divisible by µC′ = µC . Recall that, from (C, ⟨γ ;ψ⟩) ∈ Iℓk,
the term τn−i is a linear term in variables q[ℓ,k] and u, in which the coefficient of the
variable qn−ℓ is divisible by µC . From Lemma 13, we conclude that τn−i[τα / µC · qn−ℓ]
is a linear term in variables q[ℓ+1,k] and u. Therefore, C ′ is a (k, ℓ + 1)-LEAC. Lastly,
assuming Claim 6, the coefficients of the variables q[ℓ+1,k] in the term τn−i[

τ
α / µC · qn−ℓ]

are divisible by ηC , and the coefficient of u is divisible by λ = ηC
µC

. Since the assert
command of line 7 is satisfied, the constant of this term is also divisible by λ. We
conclude that the divisions by λ performed to compute τ ′n−i are without remainder, and
that in this term the coefficients of the variables in q[ℓ+1,k] are divisible by µC′ .

• Item (ii): We have already shown that γ′ is a linear program with divisions in variables
q[ℓ+1,k] and u. It thus suffices to show that γ′ satisfies the following properties: (i) every
coefficient of the variables in q[ℓ+1,k] is divisible by µC′ , and (ii) for each q in q[ℓ+1,k], γ′

contains an inequality of the form a · q ≥ 0 for some a ≥ 1.
For the first property, let us go back to the fact that the coefficients of the variables
q[ℓ+1,k] in (in)equalities of γ[τα / µC · qn−ℓ] are divisible by ηC (Claim 6). Following the
(remainder-less) divisions by λ = ηC

µC
performed in lines 5 and 6, we conclude that in all

(in)equalities of γ′ the coefficients of the variables in q[ℓ+1,k] are divisible by µC′ = µC .
For the second property, recall that for every q in q[ℓ+1,k], γ features an inequality of the
form b · q ≥ 0 for some b ≥ 1. In γ′ this inequality is transformed into α·b

λ · q ≥ 0, where
α·b
λ is positive and, assuming Claim 6, an integer.

• Item (iii): For brevity, let C = (y1 ← ρ1, . . . , yt ← ρt) and C ′ = (y0 ← ρ′0, . . . , yt ← ρ′t),
where y0 ← ρ′0 is an alias for the assignment qn−ℓ ← ρ

a that the algorithm prepend to C
in line 7, in order to define C ′. We must show that ⟨γ′ ; ψ⟩ implies Ψ(C ′), that is,

0 ≤ rk < 2xn−k−1 ∧ ∃q[0,ℓ]
(
0 ≤ qk · 2xn−k−1 + rk < 2xn−k ∧ ∃xk−1

(
θ ∧

∧t
i=0(y

′
i = ρ′i)

))
.

We have already established that ⟨γ′ ;ψ⟩ is equivalent to ∃qn−ℓ : φ∧ (a · qn−ℓ = ρ). Since
φ implies Ψ(C), we then conclude that ⟨γ′ ; ψ⟩ implies

0 ≤ rk < 2xn−k−1 ∧ ∃q[0,ℓ]
(
0 ≤ qk · 2xn−k−1 + rk < 2xn−k

∧ ∃xk−1
(
θ ∧

∧t
i=1(yi = ρi) ∧ (a · qn−ℓ = ρ)

))
.

Hence, as line 7 does not modify the assignments in C that feature variables in xk−1, to
conclude that ⟨γ′ ; ψ⟩ implies Ψ(C ′) it suffices to show that, for every i ∈ [0..ℓ− 1],

a · qn−ℓ = ρ =⇒
(
ηC · qn−i = τn−i ⇐⇒ a · qn−i = τ ′n−i

)
, (16)

39

Section 5.3: A variation of Bareiss algorithm

where τn−i is the term such that qn−i ← τn−i

ηC
occurs in C, and τ ′n−i is the term such

that qn−i ←
τ ′n−i

a occurs in C ′. Recall that α = a
µC
≥ 1, λ = ηC

µC
≥ 1, and that all

divisions performed in line 7 are without remainder. Then, Equation (16) follows from
the equivalences below:

(ηC · qn−i − τn−i)[ρα / µC · qn−ℓ]
= α · ηC · qn−i − (τn−i[

ρ
α / µC · qn−ℓ]) Hby def. of substitutionI

=
α · ηC
λ
· qn−i − τ ′n−i Hdivision by λI

= a · qn−i − τ ′n−i Hfrom α = a
µC

, λ = ηC
µC

I

This concludes the proof that (C ′, ⟨γ′ ; ψ⟩) belongs to Iℓ+1
k . To conclude the proof Claim 7,

it remains to show Item 2b. Consider a solution ν : X \ {qn−ℓ} → N to ⟨γ′ ; ψ⟩, and let
ν ′ := ν+ [qn−ℓ 7→ ν(ρ)

a]. Since ⟨γ′ ;ψ⟩ is equivalent to ∃qn−ℓ : φ ∧ (a · qn−ℓ = ρ), it follows that
ν ′ is a valid assignment of variables into N. By definition, for each i ∈ [0..ℓ−1], evaluating C ′ on
ν assigns to the variable qn−i the (non-negative) integer ν(τ ′n−i)

a . Directly from Equation (16),

we have ν(τ ′n−i)

a = ν′(τn−i)
ηC

. Moreover, since C and C ′ agree on all the assignments to all
variables in xk−1, we conclude that C[xm](ν) = C[xm](ν

′).

5.3 A variation of Bareiss algorithm

We now introduce our variation of Bareiss algorithm. As already stated, Bareiss algorithm is
commonly used to calculate the echelon form of a matrix with integer entries. For a formal definition
of echelon form, we refer the reader to standard linear algebra textbooks (e.g., [HK71]). However,
below we do not rely on this definition, as we characterize every single entry that the manipulated
matrix has throughout the procedure, in terms of the original ones.

Some notation. Consider a m× d integer matrix B0:

B0 :=

 b1,1 . . . b1,d
...

. . .
...

bm,1 . . . bm,d

 .

Let ℓ ∈ [0..min(m, d)]. We write b(ℓ)i,j (with (i, j) ∈ [1..m]×[1..d]) and b(ℓ)r←j (with (r, j) ∈ [1..ℓ]×[1..d])
to denote the following sub-determinants of B0:

b
(ℓ)
i,j := det


b1,1 . . . b1,ℓ b1,j
...

. . .
...

...
bℓ,1 . . . bℓ,ℓ bℓ,j
bi,1 . . . bi,ℓ bi,j

 , b
(ℓ)
r←j := det

b1,1 . . . b1,r−1 b1,j b1,r+1 . . . b1,ℓ
...

. . .
...

...
...

. . .
...

bℓ,1 . . . bℓ,r−1 bℓ,j bℓ,r+1 . . . bℓ,ℓ

 .

Let us fix k ∈ [0..min(m, d)] (this quantity corresponds to the number of iterations the algorithm
will perform). For every ℓ ∈ [1..k], we define λ0 := 1 and λℓ := b

(ℓ−1)
ℓ,ℓ . (This notation is chosen

intentionally: we will later show that |λℓ| corresponds to the integer λ computed by Algorithms 4
and 5 when applied to inputs featuring pairs from Iℓk.) Throughout this section, we assume that
every λℓ is non-zero.

40

Section 5.3: A variation of Bareiss algorithm

Let us moreover fix a positive integer µ (we will later set µ to the integer µC of the LEAC C in
input of Algorithms 4 and 5), fix in g ∈ [k..d] (an index of a column in the B0), and consider the
diagonal matrix Ug := diag(µ, . . . , µ, 1, . . . , 1) having µ in all positions (i, i) with i ∈ [1..g], and 1 in
positions (i, i) with i ∈ [g + 1..d].

The algorithm. The input matrix is of the form

B′0 := B0 · Ug =

µ · b1,1 . . . µ · b1,g b1,g+1 . . . b1,d
...

. . .
...

µ · bm,1 . . . µ · bm,g bm,g+1 . . . bm,d

 . (17)

The algorithm iteratively constructs a sequence of matricesB′1, . . . , B′k as follows. Consider ℓ ∈ [0..k − 1],
and let B′ℓ be the matrix

B′ℓ :=

h1,1 . . . h1,d
...

. . .
...

hm,1 . . . hm,d

 .

The matrix B′ℓ+1 is constructed from B′ℓ by applying the following transformation

01: let ± be the sign of hℓ+1,ℓ+1, and α :=
±hℓ+1,ℓ+1

µ ▷ this division is without remainder

02: multiply the row ℓ+ 1 of Bℓ by ±1
03: for every row i except row ℓ+ 1 do

04: let β :=
hi,ℓ+1

µ ▷ this division is without remainder

05: multiply the ith row of B′ℓ by α ▷ B′ℓ(i, ℓ+ 1) is now α · gi,ℓ+1

06: subtract ±β · (hℓ+1,1, . . . , hℓ+1,d) from the ith row of B′ℓ
07: divide each entry of the ith row of B′ℓ by |λℓ| ▷ these divisions are without remainder

Characterization of the entries of the matrices. The following three lemmas fully charac-
terize all entries in the matrices B′1, . . . , B′k in terms of the entries of B′0. Their proofs are given
in Appendix C.4, after introducing the necessary background on the (classical) Bareiss algorithm.

Lemma 15. Proof in
page 96

For all ℓ ∈ [0..k− 1], the (ℓ+1)th row of B′ℓ+1 is obtained by multiplying the (ℓ+1)th
row of B′ℓ by the sign of its (ℓ+ 1)th entry.

Lemma 16. Proof in
page 96

Consider ℓ ∈ [0..k] and i ∈ [ℓ+ 1..m], and let ± be the sign of λℓ. Then:

1. For every j ∈ [1..g], the entry in position (i, j) of the matrix B′ℓ is ±µ · b(ℓ)i,j .
(In particular, this entry is zero whenever j ≤ ℓ.)

2. For every j ∈ [g + 1..d], the entry in position (i, j) of the matrix B′ℓ is ±b(ℓ)i,j .

Lemma 17. Proof in
page 97

Consider ℓ ∈ [1..k] and i ∈ [1..ℓ], and let ± be the sign of λℓ. Then:

1. For every j ∈ [1..g], the entry in position (i, j) of B′ℓ is ±µ · b(ℓ)i←j.
(In particular, this entry is zero if j ≤ ℓ and i ̸= j, and it is instead ±µ · b(ℓ−1)ℓ,ℓ when i = j.)

2. For every j ∈ [g + 1..d], the entry in position (i, j) of B′ℓ is ±b(ℓ)i←j.

41

Section 5.4: How coefficients evolve as ElimVars executes, and proof of Claim 6

The next lemma provides an alternative algorithm to reconstruct the matrix B′ℓ starting from
its first ℓ rows and from B′0, without constructing B′1, . . . , B′ℓ−1. In the next section, this lemma
will turn out useful when analyzing the terms computed by Algorithm 2.

Lemma 18. Proof in
page 97

Let ℓ ∈ [0..k] and i ∈ [ℓ+ 1..m]. Consider the following transformation applied to B′0:

1: multiply the ith row of B′0 by |λℓ|
2: for r in [1..ℓ] do subtract bi,r · ur to the ith row of B′0, where ur is the rth row of B′ℓ

After the transformation, the ith rows of B′0 and B′ℓ are equal.

5.4 How coefficients evolve as ElimVars executes, and proof of Claim 6

We now prove that the evolution of the variable coefficients during ElimVars mirrors that of the
matrix entries in our variation of Bareiss algorithm. (For brevity, in this section by Bareiss algorithm
we always mean this variation.) This is done by setting up a sequence of matrices M0,M1, . . . , where
Mℓ snapshots the coefficients of the variables qk and u in the (in)equalities of γ or in the terms
of the circuit C, after ℓ iterations the while loop in ElimVars. We then show that Mℓ can
alternatively be obtained from M0 by performing ℓ iterations of Bareiss algorithm. In doing so, we
also establish Claim 6.

Throughout the section, let (qk−1, C[xm], ⟨γ ; ψ⟩) be the triple in input to ElimVars, with
(C, ⟨γ ; ψ⟩) ∈ I0k , for some k ∈ [0..n− 1]. Also, let µ := µC . Since Algorithm 5 does not modify the
formula ψ, each non-deterministic branch of ElimVars can be identified with a sequence of pairs

(C, γ) = (C0, γ0)
e0−→ (C1, γ1)

e1−→ (C2, γ2) . . .
ej−1−−−→ (Cj , γj)

ej−→ . . . (18)

where eℓ is the equality computed by Algorithm 4 during the (ℓ+1)th iteration of ElimVars, and
Cℓ and γℓ are the circuit C and formula γ at the completion of the ℓth iteration of ElimVars,
respectively. At this point, the length of this sequence is unknown. It might be short (e.g., if one of
the assert commands of Algorithm 5 fails and the algorithm rejects), or even infinite —we are not
assuming Claim 6, and thus cannot guarantee that variables are eliminated correctly. Nonetheless,
we will prove that in non-rejecting runs, each iteration of the while loop in ElimVars eliminates
one of the variables qk−1. Because of this, we truncate the above sequence to some j ∈ [0..k], and
focus our analysis on this finite prefix.

Towards defining the matrices. Let us fix an enumeration

(ρ1 ∼1 0), (ρ2 ∼2 0), . . . , (ρt ∼t 0) (19)

of all the equalities and inequalities of γ0 (that is, each ∼i belongs to {=,≤}). Observe that Al-
gorithm 5 constructs γℓ+1 from γℓ by simply applying a substitution (line 3), adding a divisibility
constraint (again line 3), and performing some integer divisions. Since substitutions are applied
locally to each constraints, this implies not only that the number of (in)equalities in γ0, γ1, . . . , γj
does not change, but that in fact there is a one-to-one mapping between (in)equalities of γ0 and
those in γℓ. That is, there is an enumeration of the (in)equalities of γℓ such that the ith element
of the enumeration is the inequality obtained from ρi ∼i 0 by applying all the substitutions and
divisions performed by Algorithm 5 during the first ℓ iterations of ElimVars. We will denote such
a one-to-one mapping, from (in)equalities of γ0 to those in γℓ, as Λℓ (Λ0 is the identity).

Let us now look at the equality eℓ (with ℓ ∈ [0..j − 1]). Following Algorithm 4, this equality is
of the form a · q = τ − s, where s is the shift introduced in line 3 of Algorithm 4, and a · q − τ is a
term of one of the following two types:

42

Section 5.4: How coefficients evolve as ElimVars executes, and proof of Claim 6

qn qn−1 . . . qn−k+1 qn−k u



µ · b1,1 µ · b1,2 . . . µ · b1,k µ · b1,k+1 b1,k+2 coefficients of g0
µ · b2,1 µ · b2,2 . . . µ · b2,k µ · b2,k+1 b2,k+2 coefficients in g1

...

µ · bj,1 µ · bj,2 . . . µ · bj,k µ · bj,k+1 bj,k+2 coefficients in gj−1
µ · bj+1,1 µ · bj+1,2 . . . µ · bj+1,k µ · bj+1,k+1 bj+1,k+2 coefficients in ρ1

...

µ · bj+t,1 µ · bj,2 . . . µ · bj+t,k µ · bj+t,k+1 bj+t,k+2 coefficients in ρt

Figure 2: Structure of the matrix M0. Observe that all coefficients of the variables in qk have µ as
a common factor. This is because (C, ⟨γ ; ψ⟩) belongs to I0k .

I. A term from terms(γℓ ∧ γℓ[q + p / q]). Note that the substitution [q + p / q] affects only the
constants of (in)equalities. Consequently, there is an (in)equality ρ′ ∼ 0 in γℓ where the term
ρ has the same variable coefficients as a · q − τ . In this case, we define the generator gℓ of eℓ
to be the (in)equality ρ ∼ 0 of γ0 such that Λℓ(ρ ∼ 0) = (ρ′ ∼ 0).

II. A term computed using Algorithm 2 with respect to (Cℓ, γℓ, p). This is a term obtained by
simultaneously applying two substitutions to a term ρ of the form a · u+ µCℓ

· (q′ − q′′) + d,
with a, d ∈ Z and q′, q′′ from qk−1. We define the generator gℓ of eℓ to be the equality ρ = 0.

We say that eℓ is of Type I or Type II, depending on which of the two cases above it falls under.

The matrix associated to γ0. Each of the matricesM0, . . . ,Mj we define have j+t rows (where t
is the number of equalities and inequalities in γ0) and k+2 columns. For every i ∈ [0..k], the (i+1)th
column contains coefficients of the variable qn−i. The (k + 2)th column contains coefficients of u.

In the matrix M0, for i ∈ [1..j], the ith row stores the coefficients of the variables qk and u
occurring in the generator gi−1 of ei−1. The remaining t rows store the coefficients of the variables
qk and u occurring in (in)equalities of γ0: following the enumeration in Equation (19), the (j+ r)th
row stores the variable coefficients of ρr. The structure of the matrix M0 is illustrated in Figure 2.

The matrices M1, . . . ,Mj. Let ℓ ∈ [1..j]. At the ℓth iteration of the while loop of ElimVars,
Algorithm 5 prepends a single assignment q ← τ

a to the circuit Cℓ−1 (where ±a · q = ±τ is eℓ−1,
with ± being the sign of a), and modifies all other assignments to variables from qk−1 so that the
denominator of the assigned expression becomes a. This means that ηCℓ

= a, which we abbreviate
as ηℓ. Note that then Cℓ features ℓ assignments to variables in qk−1, and the remaining assignments
are the original ones from C0, featuring the variables xk. In particular, µCℓ

= µ. We define the
matrix Mℓ as follows:

i. For i ∈ [1..ℓ], let q ← τ
ηℓ

be the (ℓ− (i− 1))th assignment in Cℓ. The ith row of Mℓ contains
the coefficients of the variables qk and u from the term ηℓ · q − τ .

ii. For every i ∈ [ℓ+ 1..j], if ei−1 is of Type I, then the ith row of Mℓ contains the coefficients of
the variables qk and u occurring in the (in)equality Λℓ(gi−1).

43

Section 5.4: How coefficients evolve as ElimVars executes, and proof of Claim 6

iii. For i ∈ [ℓ+ 1..j], if ei−1 is of Type II, then let ρ = 0 be gi−1. The ith row of Mℓ contains the
coefficients of the variables qk and u from the term obtained from ρ as follows:
1: multiply every integer in ρ by the quotient of the division of ηℓ by µ
2: for r in [1..ℓ] do ρ← ρ[τ / ηℓ · q], where q ← τ

ηℓ
is the rth assignment in Cℓ

(We will later see that this is in fact a simultaneous substitution.)

iv. For every i ∈ [1..t], the (j + i)th row of Mℓ contains the coefficients of the variables qk and u
in the term of the (in)equality Λℓ(ρi ∼i 0).

The following lemma is immediate:

Lemma 19. Let ℓ ∈ [0..j]. For every assignment q ← τ
ηℓ

in Cℓ, with q in qk, there is a row in Mℓ

whose entries encode the coefficients that qk and u have in ηℓ ·q−τ . Similarly, for every (in)equality
ρ ∼ 0 in γℓ, there is a row of Mℓ whose entries encode the coefficients that qk and u have in ρ.

Proof. For ℓ = 0, C0 has no assignments to variables in qk, and the ith entry in the enumeration
of Equation (19) is in row j + i. For ℓ ≥ 1, the lemma follows from Items (i) and (iv) above.

Correspondence between ElimVars and Bareiss algorithm. The matrix M0 has the form
required to run (our) Bareiss algorithm. Let us denote by B0 the (j + t)× (k + 2) integer matrix
such that M0 = B0 · diag(µ, . . . , µ, 1), and by bij the entry of B0 in position (i, j); as in Figure 2.
We also use the notation b

(ℓ)
i,j and b

(ℓ)
r←j to denote the sub-determinants of B0 analogous to those

in Section 5.3, and define λ0 := 1 and λℓ := b
(ℓ−1)
ℓ,ℓ . We write B′1, . . . , B′j for the sequence of matrices

iteratively constructed by Bareiss algorithm, starting from the matrix B′0 :=M0. The next lemma
establishes the key correspondence between these matrices and M1, . . . ,Mj .

Lemma 20. Consider ℓ ∈ [0..j]. Then, Mℓ = B′ℓ,
ηℓ
µ = |λℓ| ≠ 0, and if ℓ ≥ 1, then Claim 6 holds

when restricted to Algorithm 5 having as input (Cℓ−1[xm], ⟨γℓ−1 ; ψ⟩) and the equality eℓ−1.

Proof. The proof is by induction on ℓ ∈ [0..j].

base case: ℓ = 0. By definition, M0 = B′0. Since C0 is a (k, 0)-LEAC, η0 = µ, and so η0
µ = 1 = λ0.

induction hypothesis. For ℓ ≥ 1, Mℓ−1 = B′ℓ−1 and ηℓ−1

µ = |λℓ−1| ≠ 0. Moreover, if ℓ ≥ 2,
then Claim 6 holds when restricted to Algorithm 5 having as input (Cℓ−2[xm], ⟨γℓ−2 ;ψ⟩) and
the equality eℓ−2.

induction step: ℓ ≥ 1. By induction hypothesis, Claim 6 holds whenever Algorithm 5 is called on
the inputs (Cr[xm], ⟨γr ;ψ⟩) and the equality er, for every r ∈ [0..ℓ−2]. In particular, following
the correctness arguments given in the proof of Lemma 14, we conclude that ElimVars is
correct for the first ℓ − 1 iterations, and (Cℓ−1[xm], ⟨γr ; ψ⟩) thus belong to Iℓ−1k . Indeed, to
obtain correctness for the first ℓ− 1 iterations, it suffices to restrict Claim 6 to the first ℓ− 1
calls of Algorithm 5, featuring the equalities e0, . . . , eℓ−2.

Our first goal is to prove that the variable coefficients of the equality eℓ−1 are stored in the
ℓth row of Mℓ−1. Note that since (Cℓ−1[xm], ⟨γr ;ψ⟩) ∈ Iℓ−1k , Algorithm 4 outputs an equality
of the form a · qn−(ℓ−1) = τ with a ̸= 0, and that, by definition, this equality is eℓ−1.

Claim 8. The ℓth row of Mℓ−1 contains the variable coefficients of the term a · qn−(ℓ−1) − τ .

44

Section 5.4: How coefficients evolve as ElimVars executes, and proof of Claim 6

Proof. If eℓ−1 is of Type I, then by definition the ℓth row of Mℓ−1 contains the coefficients of
the variables qk and u occurring in the (in)equality ρ′ ∼ 0 given by Λℓ−1(gℓ−1). (In particular,
for ℓ = 1, we have ρ′ ∼ 0 equal to g0.) By definition of Λℓ−1, the terms ρ′ and a · qn−(ℓ−1) − τ
share the same variable coefficients.

If eℓ−1 is of Type II, then gℓ−1 is an equality ρ = 0 where ρ is of the form b · u+ µ · (q′ − q′′) + d,
with b, d ∈ Z and q′, q′′ from qk. Moreover, inspecting Algorithm 2, we see that the variable
coefficients of a · qn−(ℓ−1) − τ corresponds to the ones obtained from b · u + µ · (q′ − q′′) + d
by simultaneously applying two substitutions ν1 and ν2. The substitution ν1 has one of the
following forms (recall that ηℓ−1

µ = |λℓ−1|, by induction hypothesis):

1. [
ηℓ−1·q′
|λℓ−1| / µ · q

′]; this is the case when Cℓ−1 does not assign any expression to q′, and the
guess in line 6 returns false.

2. [
ηℓ−1·q′+ηℓ−1·p

|λℓ−1| / µ · q′], with p := mod(qn−(ℓ−1), γℓ−1); this is the case when q′ = qn−(ℓ−1),
Cℓ−1 does not assign any expression to q′, and the guess in line 6 returns true.

3. [τ ′

|λℓ−1| / µ · q
′]; in this case Cℓ−1 features q′ ← τ ′

ηℓ−1
and the guess in line 6 returns false.

4. [τ ′σ
|λℓ−1| / µ·q

′] where σ is the substitution [qn−(ℓ−1)+p / qn−(ℓ−1)]; in this case Cℓ−1 features

q′ ← τ ′

ηℓ−1
and the guess in line 6 returns true.

Observe that the coefficients of qk and u are the same in τ ′ and τ ′σ, and that moreover
these terms do not contain variables to which Cℓ−1 assigns some expressions (because Cℓ−1
is a (k, ℓ − 1)-LEAC). We also note that the only effect that the substitutions in Items 1
and 2 have on the variable coefficients of ρ is to multiply them by |λℓ−1|, because after this
multiplication, |λℓ−1| · µ · q′ is replaced by ηℓ−1 · q′ or ηℓ−1 · q′ + ηℓ−1 · p, but ηℓ−1 = |λℓ−1| · µ.

An analysis similar to the one above can be performed for ν2 (simply change q′ for q′′, and
line 6 for line 7, in the items above). From the definition of simultaneous substitution, we then
conclude that the variables coefficients of a ·qn−(ℓ−1)−τ are exactly those in the term obtained
from ρ by simultaneously applying all substitutions of the form [ρ′

|λℓ−1| / µ · q], where q ∈
{qn, . . . , qn−(ℓ−2)} and q ← ρ′

ηℓ−1
is an assignment in Cℓ−1. For ℓ = 1, this list of substitutions

is empty, and indeed by definition of M0, the ℓth row contains the variable coefficients of ρ.
For ℓ > 1, these substitutions correspond to the transformation applied to ρ in Item (iii) of
the definition of Mℓ−1, in order to define its ℓth column. The claim then holds.

We now analyze Mℓ and B′ℓ row by row, showing that the two matrices are equal. In the
process, we will also prove the other statements in the lemma. Below, we write ± for the sign
of the coefficient a ̸= 0 in the term a · qn−(ℓ−1) − τ , and define α := ±a

µ (by Lemma 13 this
division is without remainder). Let us also write

qn−(ℓ−2) ←
τn−(ℓ−2)(u, q[ℓ−1,k])

ηℓ−1
, . . . , qn ←

τn(u, q[ℓ−1,k])

ηℓ−1

for the sequence of all the assignments to variables in qk featured in Cℓ−1 (this is a prefix of
all the assignments in Cℓ−1, since this circuit is a (k, ℓ− 1)-LEAC).

The following sequence of Claims summarizes our analysis. As their proofs are rather similar
(each crucially relying on Lemmas 15 to 18) below we only provide a detailed proof of Claim 10,
deferring the proofs of the remaining claims to Appendix C.6.

45

Section 5.4: How coefficients evolve as ElimVars executes, and proof of Claim 6

Claim 9. Proof in
page 98

The ℓth rows of Mℓ and B′ℓ are equal. Moreover, ηℓ = ±a and α = ηℓ
µ = |λℓ| ≠ 0.

Claim 10. Let i ∈ [1..ℓ − 1]. The ith rows of Mℓ and B′ℓ are equal. Moreover, in all terms
τn−r[

±τ
α / µ · qn−ℓ−1], with r ∈ [0..ℓ − 2], all coefficients of the variables q[ℓ,k] are divisible by

ηℓ−1, and all coefficients of u are divisible by ηℓ−1

µ .

Claim 11. Proof in
page 99

Let i ∈ [j+1..j+t]. The ith rows of Mℓ and B′ℓ are equal. Moreover, in all equalities
and inequalities γℓ−1[±τα / µ · qn−ℓ−1], all coefficients of the variables q[ℓ,k] are divisible by ηℓ−1,
and all coefficients of u are divisible by ηℓ−1

µ .

Claim 12. Proof in
page 99

Let i ∈ [ℓ+ 1..j]. The ith rows of Mℓ and B′ℓ are equal.

Proof of Claim 10. By definition (Item (i)), the matrixMℓ includes, in these rows, the variable
coefficients of the assignments in Cℓ, ranging from the (ℓ − 1)th assignment to the 2nd one
(in this reverse order). The corresponding rows in Mℓ−1 contain the variable coefficients
of the terms (ηℓ−1 · qn − τn) to (ηℓ−1 · qn−(ℓ−2) − τn−(ℓ−2)), which arise from the assignments
in Cℓ−1. Let i ∈ [1..ℓ − 1]. Since line 7 of Algorithm 5 prepends one assignment to Cℓ−1
and only updates the rest, the ith row of Mℓ corresponds precisely to the term obtained by
running line 7 on the assignment qn−(i−1) ←

τn−(i−1)

ηℓ−1
. We will analyze this update below. At

the same time, since the variable coefficients of this assignment are stored in the ith row of
B′ℓ−1, we can alternatively track how Bareiss algorithm updates this row when computing B′ℓ
from B′ℓ−1. We will then deduce that the ith rows of Mℓ and B′ℓ are equal.

Let us examine how line 7 updates the assignment qn−(i−1) ←
τn−(i−1)

ηℓ−1
. Let us write τn−(i−1)

as β·µ·qn−(ℓ−1)+τ ′. Line 7 first constructs the term τn−(i−1)[
±τ
α / µ·qn−(ℓ−1)]. The substitution

multiplies τn−(i−1) by α ≥ 1, to then replace α · µ · qn−(ℓ−1) by ±τ . The resulting term is
±β ·τ+α ·τ ′ Note that multiplying the denominator by α yields α ·ηℓ−1 = ±a

µ ·ηℓ−1 = ±a·
ηℓ−1

µ .
So, at this intermediate stage of line 7, the assignment can be viewed as

qn−(i−1) ←
±β · τ + α · τ ′

±a · ηℓ−1

µ

. (20)

In the upcoming analysis of the update performed by Bareiss algorithm, we will show that
every variable coefficient in the term ±β · τ + α · τ ′ is divisible by ηℓ−1

µ . This implies that the
constant of the term must also be divisible by ηℓ−1

µ ; otherwise the expression in Equation (20)
would fail to evaluate to an integer under any variable assignment. This explains the assert
command of line 7. Line 7 concludes by dividing every integer in the term ±β · τ + α · τ ′
by ηℓ−1

µ , and setting the denominator to ±a. Let us write (±β · τ + α · τ ′)/ηℓ−1

µ for the term
resulting from these divisions. The circuit Cℓ thus features the assignment

qn−(i−1) ←
(±β · τ + α · τ ′)/ηℓ−1

µ

±a
,

and the ith row of Mℓ stores the variable coefficients of ±a · qn−(i−1)−
(
(±β · τ +α · τ ′)/ηℓ−1

µ

)
.

We now turn to Bareiss algorithm. By induction hypothesis, the ith row of B′ℓ−1 contains the
variable coefficients of the term ηℓ−1 · qn−(i−1) − (β · µ · qn−(ℓ−1) + τ ′). The algorithm first
multiplies this row by α, resulting in the variable coefficients of α · ηℓ−1 · qn−(i−1) − α(β · µ ·
qn−(ℓ−1) + τ ′). Next, the algorithm subtracts to this row the quantity ±(−β) · rℓ, where rℓ is

46

Section 5.5: Complexity of ElimVars

the ℓth row of B′ℓ−1. By Claim 8, rℓ holds the variable coefficients of a · qn−(ℓ−1) − τ . Hence,
after this subtraction, the ith row contains the variable coefficients of the term

α · ηℓ−1 · qn−(i−1) − α(β · µ · qn−(ℓ−1) + τ ′)−±(−β) · (a · qn−(ℓ−1) − τ)
= α · ηℓ−1 · qn−(i−1) − (±β · τ + α · τ ′).

Lastly, each entry of the ith row is divided by |λℓ−1| = ηℓ−1

µ . Thanks to Lemma 17, we know
that these divisions are exact, since the results correspond to sub-determinants of the matrix
B′0. Moreover, because qn−(i−1) does not appear in neither τ nor τ ′, we conclude that every
variable coefficient in ±β · τ + α · τ ′ is divisible by ηℓ−1

µ . Therefore, the divisions performed
in line 7 of Algorithm 5 are also without remainder. Since α · ηℓ−1 = ±a · ηℓ−1

µ , we conclude
that the ith row of B′ℓ holds the variables coefficients of ±a · qn−(i−1)−

(
(±β · τ +α · τ ′)/ηℓ−1

µ

)
.

That is, the ith rows of Mℓ and B′ℓ coincide.

To complete the proof, let us address the second statement of the claim. Consider once more
the term τn−(i−1)[

±τ
α / µ · qn−(ℓ−1)], that is, ±β · τ + α · τ ′. We have already established that

all variable coefficients of this term are divisible by ηℓ−1

µ ; in particular, this shows the second
statement of the claim for the variable u. As for the remaining variables, Lemma 17 guarantee
that, once divided by ηℓ−1

µ , their coefficients are still divisible by µ. Therefore, in ±β ·τ+α ·τ ′,
all coefficients of variables other than u are divisible by ηℓ−1.

Lemma 20 follows: Claims 9 to 12 imply that Mℓ = B′ℓ. Claim 9 establishes ηℓ
µ = |λℓ| ̸= 0.

Claims 10 and 11 imply that Claim 6 holds when restricted to Algorithm 5 having as input
the pair (Cℓ−1[xm], ⟨γℓ−1 ; ψ⟩) and the equality eℓ−1.

Proof in
page 101

Claim 6 follows as a corollary of Lemma 20; thus completing the proof of correctness of ElimVars.

5.5 Complexity of ElimVars

In addition to being crucial for establishing the correctness of ElimVars, Lemma 20 allows us to
obtain a refined complexity analysis of the procedure. The next lemma summarizes this analysis.

Lemma 21. Proof in
page 101

The algorithm from Lemma 14 runs in non-deterministic polynomial time. Consider
its execution on an input (q, C[xm], ⟨γ ; ψ⟩), where (C, ⟨γ ; ψ⟩) belongs to I0k , and define:

L := 3 · µC · (4 · ⌈log2(2 · ξC + µC)⌉+ 8),

Q := max{|b| : b ∈ Z is a coefficient of qn−k or of a variable in q, in a term from terms(γ)},
U := max{|a| : a = L or a ∈ Z is a coefficient of u in a term from terms(γ)},
R := max{|d| : d = L or d ∈ Z is a constant of a term from terms(γ)}.

In each non-deterministic branch β, the algorithm returns a pair (C ′[xm], ⟨γ′ ; ψ⟩) such that:

1. γ′ features k constraints more than γ, they are all divisibility constraints.

2. The circuits C and C ′ assign the same expressions to xn−k, . . . , xn (in particular, µC = µC′).

3. In terms τ either from terms(γ′) or in assignments qn−i ← τ
ηC′

of C ′ (where i ∈ [0..k − 1]),

• the coefficient of the variable qn−k is µC · c, for some c ∈ Z with |c| ≤ (k+1)k+1
(Q
µC

)k+1;

• the absolute value of the coefficient of the variable u is bounded by (k + 1)k+1
(Q
µC

)k
U ;

47

Section 6: Proof of Theorem 1

• the absolute value of the constant is bounded by ((k+1)·Q)2(k+2)2

(µC)2k2
·mod(γ) ·R.

4. The positive integer mod(γ′) divides c ·mod(γ), for some positive integer c ≤ (k·Q)k
2

(µC)k(k−1) .

5. We have ηC′ = µC · g, for some positive integer g ≤ kk
(Q
µC

)k.
Proof idea. The bounds follow by applying Lemma 20 in conjunction with Lemmas 16 and 17, and
recalling that the Leibniz formula for determinants yields |det(A)| ≤ dd ·

∏d
i=1 αi for any d×d integer

matrix A in which the entries of the ith column are bounded, in absolute value, by αi ∈ N.

6 Proof of Theorem 1

In this section, we complete the proof of Theorem 1: we define the procedure OptILEP for solving
the integer linear-exponential programming optimization problem, to then show that the procedure
runs in non-deterministic polynomial time and returns an ILESLP encoding an (optimal) solution,
if one exists. The section is divided into four parts. We begin with an overview of the procedure,
expanding on the brief summary provided in Section 2.2. As part of this overview, we introduce
a slight variant of LEACs, which we refer to as PreLEACs. In Section 6.2 we present the full
correctness proof of OptILEP, followed by its complexity analysis in Section 6.3. The pseudocode
of OptILEP considers the setting of maximizing a single variable x subject to an integer linear-
exponential program. In Section 6.4 we show (using rather standard arguments), how to extend
the procedure to the optimization (maximization or minimization) of arbitrary linear-exponential
terms, completing the proof of Theorem 1.

6.1 Overview of OptILEP

The pseudocode of OptILEP is given in Algorithm 6. Echoing Section 2.2, the procedure starts
by guessing an ordering θ of the form 2xn ≥ · · · ≥ 2x1 ≥ 2x0 = 1, where x1, . . . , xn are the
variables appearing input (φ,w) of OptILEP, see lines 1–4. These lines also initialize the remainder
variables r (as described in Section 2), and the circuit C, which will ultimately become the ILESLP
encoding the computed solution. After this initialization step, the procedure enters its main loop.

Let 2x and 2y be the leading and second-leading exponential terms of θ, respectively (as in lines 6
and 7). As mentioned in Section 2.2, the main loop of the procedure eliminates x by mirroring the
four steps of the procedure from [CMS24], with the key difference that Step II is replaced by our
optimum-preserving procedure ElimVars. We refer the reader back to Section 2 for a refresher,
particularly on the specifications of Steps I and III, which we treat here as black boxes.

As discussed in Section 2, Step I “divides” all constraints in φ by 2y, non-deterministically com-
puting from φ and θ a pair of formulae of the form (γ(qx, q, u), ψ(y, rx, r

′)), where, in particular, γ
is a linear program with divisions. As described in the specification of Step I given by Lemma 4, φ
and (γ, ψ) are “coupled” by the system featuring the equalities x = qx · 2y + rx and r = q · 2y + r′

(Equation (3)), with qx and q quotient variables, and rx and r′ fresh remainder variables. The
change of variables given by this system must be applied also to the circuit C; this is done in line 9.

The goal of Step II is to eliminate the variables q from γ. We preserve optimal solutions while
eliminating these variables by appealing to our instantiation of ElimVars. However, according
to Lemma 14, a correct invocation to this algorithm requires that its input belong to I0k (for
some k). Accordingly, lines 10–12 perform the necessary manipulations on γ and ψ to ensure this
condition is met.

48

Section 6.1: Overview of OptILEP

Algorithm 6 OptILEP: Exploration of optimal solutions for ILEP.

Input: φ(x) : integer linear-exponential program;
w : a variable from x (to be maximized)

Output of each branch (β): An ILESLP σβ .

1: C ← ∅ ▷ the empty 0-PreLEAC. The objective function is C[w]
2: let x0 be a fresh variable
3: θ ← guess ordering 2xn ≥ . . . ≥ 2x1 ≥ 2x0 = 1, where x1, . . . , xn is a permutation of x

▷ below, we write xm for the variable among x1, . . . , xn corresponding to w
4: r ← empty vector of (remainder) variables
5: while θ is not the ordering 2x0 = 1 do
6: 2x ← leading exponential term of θ
7: 2y ← second-leading exponential term of θ
8: (γ(qx, q, u), ψ(y, rx, r

′)) ← apply the algorithm from Lemma 4 on (φ, θ)

▷ (qx, q) quotient variables, (rx, r′) new remainder variables, u proxy for 2x−y

9: update C: add the assignment x← qx · 2y + rx, and replace each variable in r following the
system r = q·2y+r′ stemming from the above call of the algorithm form Lemma 4

10: γ ← γ ∧ q ≥ 0 ∧ qx ≥ 0 ▷ prepare formulae for the call to ElimVars
11: update γ: replace each (in)equality τ ∼ 0 with µC · τ ∼ 0

12: ψ′ ← ψ ∧ θ ∧ (x = qx · 2y + rx) ∧ (u = 2x−y)

13: (C[xm], ⟨γ′ ; ψ′⟩) ← ElimVars(q, C[xm], ⟨γ ; ψ′⟩) ▷ Lemma 14
14: (γ′′(qx), ψ

′′(y, rx)) ← apply the algorithm from Lemma 6 on γ′ ▷ Step III
15: ℓ ← greatest non-negative lower bound of qx in γ′′ ▷ default: 0
16: h ← least upper bound of qx in γ′′ ▷ default: ∞
17: if h =∞ then h← ℓ+ mod(γ′′)

18: v ← guess a value in [ℓ..h] such that γ′′(v) is true
19: update C: translate into a PreLEAC following Remark 4, replacing u for 2x−y and qn−k for v
20: r ← (rx, r

′)

21: φ ← ψ ∧ ψ′′

22: remove 2x from θ

23: assert(φ(0) is true)
24: update C: replace x0 and every variable in r with 0

25: return C ▷ C is an ILESLP encoding a solution to φ

S
t
ep

I
S
t
ep

II
S
t
ep

IV

49

Section 6.1: Overview of OptILEP

After eliminating the variables q and appropriately updating the circuit C via ElimVars,
line 14 applies Step III from [CMS24]. This eliminates the variables x and u (where u is the proxy
for 2x−y). According to the specification in Lemma 6, this step transforms the linear program with
divisions γ′(qx, u) produced as output of ElimVars into a pair consisting of a linear program with
divisions γ′′(qx) and linear-exponential program with divisions ψ′′(y, rx).

Step IV (lines 15–19) eliminates qx. In [CMS24], this is achieved by checking whether the linear
program with divisions γ′′ is satisfiable, and replacing it with ⊤ if so. In contrast, OptILEP instead
works by trying “all” the solutions to γ′′. More precisely, since γ′′ is univariate, all of its inequalities
can be rewritten in the form ℓ∗ ≤ qx or qx ≤ h∗, with ℓ∗, h∗ ∈ Z. Then, every solution to γ′′ must
lie in the interval [ℓ..h], where ℓ is either 0 or the largest such integer ℓ∗, and h is either ∞ or the
smallest such integer h∗. If h ̸=∞, we can (non-deterministically) test all values in this interval (in
the complexity proof we will show that both ℓ and h have polynomial bit size). If instead h =∞, in
the correctness proof we will show that either no optimal solution exists, or the objective function
is independent of qx. To cover the latter case, the algorithm updates h from ∞ to ℓ + mod(γ′′)
(line 17), ensuring that at least one solution of γ′′ is explored. After eliminating qx, the body of the
loop terminates with a small “Step V” (lines 20–22), which prepares φ for the next iteration, and
updates θ by removing 2x (making 2y the new leading exponential term).

In the above overview, we have not elaborated on the structure of the circuit C during the
procedure. According to Lemma 14, C must be a (k, 0)-LEAC when ElimVars is called, and it
evolves into a (k, k)-LEAC by the time this algorithm terminates. From this information, we know
that C must become a (k, 0)-LEAC precisely when line 9 executes. Prior to this line, however, C
contains no quotient variable, and instead has the structure given in the following definition:

Definition 3 (PreLEAC). Let k ∈ [0..n]. A k-PreLEAC C is a sequence of assignments

xn−i ←
∑k

j=i+1 ai,j · 2xn−j

µ
+ rn−i for i from k − 1 to 0,

where every ai,j is in Z, and the denominator µ is a positive integer.

We transfer the notation used for LEACs also to PreLEACs. In particular, we refer to the
denominator µ as µC , postulating µC := 1 when k = 0 (note that C is the empty sequence in this
case). We also define ξC :=

∑
{|ai,j | : i ∈ [0..k − 1], j ∈ [i+ 1..k]}, and write vars(C) for the set of

free variables of C, that is, xn−k and the variables rn−i. Lastly, for a variable xm with m ∈ [0..n],
we write C[xm] for the function analogous to the one defined for LEACs on page 22.

It is easy to verify that, starting from C being a k-PreLEAC, line 9 of OptILEP produces a
(k, 0)-LEAC. More interesting is the transformation that occurs in line 19, where the variables u
and qn−k are removed from the (k, k)-LEAC returned by OptILEP. The following remark describes
this transformation, which yields a (k + 1)-PreLEAC.

Remark 4 (From (k, k)-LEACs to (k+1)-PreLEACs). Let k ∈ [0..n− 1]. Let C be a (k, k)-LEAC

qn−i ←
bn−i · u+ cn−i · qn−k + dn−i

η
for i from k − 1 to 0,

xn−i ←
∑k

j=i+1 ai,j · 2xn−j

µ
+ qn−i · 2xn−k−1 + rn−i for i from k to 0,

such that µ divides η. Let λ = η
µ . By replacing u for 2xn−k−xn−k−1, assigning an integer v to qn−k,

and substituting the expressions for qn−(k−1), . . . , qn into the expressions for xn−k, . . . , xn, one trans-

50

Section 6.2: Correctness of OptILEP

forms C into the following (k + 1)-PreLEAC C ′:

xn−k ←
η · v · 2xn−k−1

η
+ rn−k

xn−i ←
(cn−i · v + dn−i) · 2xn−k−1 + (λ · ai,k + bn−i) · 2xn−k +

∑k−1
j=i+1 λ · ai,j · 2xn−j

η
+ rn−i

for i from k − 1 to 0.

Note that vars(C ′) = vars(C) \ {u, qn−k}, and when evaluating C and C ′ on a map ν : vars(C)→ N
satisfying ν(qn−k) = v and ν(u) = 2ν(xn−k)−ν(xn−k−1), the values taken by xn−k, . . . , xn coincide,
that is, C[xn−i](ν) = C ′[xn−i](ν) for every i ∈ [0..k].

6.2 Correctness of OptILEP

The next proposition states that OptILEP correctly solves ILEP.

Proposition 4. There is a non-deterministic procedure with the following specification:

Input: φ(x) : an integer linear-exponential program;
w : a variable occurring in x (to be maximized).

Output of each branch (β): σβ : an ILESLP.

The algorithm ensures that, if φ is satisfiable (resp., the problem of maximizing x subject to φ has
a solution), then there a branch β such that JσβK is a solution (resp., an optimal solution) to φ.

Proof. Let φ0(x) be the linear-exponential program in input of OptILEP, and let n denote the
number of variables in φ0. In line 3, the algorithm guesses an ordering 2xn ≥ . . . ≥ 2x1 ≥ 2x0 = 1,
where x1, . . . , xn is a permutation of x, and x0 is a fresh variable. Let Θ be the set of all such
ordering. Clearly, φ0 is equivalent to

∨
θ∈Θ(φ0 ∧ θ). To prove the proposition, it suffices to show,

for a given θ ∈ Θ, that if φ0 ∧ θ is satisfiable (resp., the problem of maximizing x subject to φ0 ∧ θ
has a solution), then, in a non-deterministic branch β, the algorithm returns an ILESLP σβ such
that JσβK is a solution (resp., an optimal solution) to φ0 ∧ θ. Therefore, throughout the proof we
fix the ordering guessed in line 3 to be some θ0 := (2xn ≥ . . . ≥ 2x1 ≥ 2x0 = 1) from Θ. Moreover,
let xm (for some m ∈ [1..n]) denote the variable to be maximized, with respect to the order θ0.

Throughout the proof, we write Sk for the set of all triples (C, θ, φ) that represent the state
of OptILEP in any of its non-deterministic branches at the point when the execution reaches line 5
(the condition of the only while loop of the procedure) for the (k + 1)th time. Since we fix the
ordering θ0, in particular S0 = {(∅, θ0, φ0)}, where ∅ is the empty sequence assigned to C in line 1.

We show that the while loop of OptILEP enjoys the following loop invariant:

loop invariant. Let k ∈ N. For every (C, θ, φ) ∈ Sk:

I1. θ is the ordering θk := (2xn−k ≥ · · · ≥ 2x1 ≥ 2x0 = 1).
I2. φ is a linear-exponential program with divisions featuring variables yk := (x0, . . . , xn−k)

and remainder variables rk−1 := (rn−(k−1), . . . , rn). The remainder variables do not
occur in exponentials, and for every i ∈ [0..k − 1], φ implies rn−i < 2xn−k .

I3. C is a k-PreLEAC of the form (xn−(k−1) ←
τn−(k−1)

µC
+ rn−(k−1) , . . . , xn ← τn

µC
+ rn).

I4. Given a solution ν : vars(φ ∧ θ) → N to φ ∧ θ, the map ν +
∑k−1

i=0 [xn−i 7→ gn−i], where
gn−i is the value taken by xn−i when evaluating C[xm] on ν, is a solution to φ0 ∧ θ0.

51

Section 6.2: Correctness of OptILEP

Moreover:

I5. ∃xk−1(φ0∧θ0) is equivalent to ∃rk−1
∨

(C,θ,φ)∈Sk
(φ∧θ), where xk−1 := (xn−(k−1), . . . , xn).

I6. If max{ν(xm) : ν is a solution to φ0 ∧ θ0} exists, then it is equal to

max{C[xm](ν) : (C, θ, φ) ∈ Sk and ν is a solution to φ ∧ θ}.

(For k ∈ [0..n], the loop invariant assumes a fixed set of variables r0, . . . , rn that are reused across
different non-deterministic branches and across iterations of the while loop. This assumption is
without loss of generality.)

Let (C, θ, φ) ∈ Sn. The loop invariant implies that θ is 2x0 = 1. This causes the condition in the
while loop to fail, terminating the loop. (In particular, we have Sk = ∅ for all k > n.) Moreover,
from Item I2, we conclude that the only solution to φ ∧ θ is the map assigning 0 to every variable.
Accordingly, the algorithm checks whether this is indeed a solution (line 23), and if so, replaces all
free variables in C with 0. Since C is a n-PreLEAC, this results in a sequence of the form

xn−i ←
ai,n +

∑n−1
j=i+1 ai,j · 2xn−j

µC
for i from n− 1 to 0,

which can easily be represented as an ILESLP. The proposition then follows from Items I5 and I6.
Therefore, to complete the proof, it suffices to verify that the loop invariant holds.

The invariant is trivially true for S0. (In particular, r−1 and x−1 are empty in this case, and
formulae like ∃x−1(φ0 ∧ θ0) simplify to just φ0 ∧ θ0.) Hence, let us assume that the loop invariant
is true when the execution reaches line 5 for the (k + 1)th time, with k ∈ [0..n− 1], and show that
the invariant still holds when the algorithm comes back to this line for the (k + 2)th time.

Consider (C, θ, φ) ∈ Sk, and let Tk+1 be the set of those triples from Sk+1 that are constructed
by (non-deterministially) running the body of the while loop starting from (C, θ, φ). More precisely,
we will show that each triple in Tk+1 satisfies Items I1–I4, and that moreover

I ′5. ∃xn−k∃rk−1(φ ∧ θ) is equivalent to ∃rk
∨

(C′,θ′,φ′)∈Tk+1
(φ′ ∧ θ′).

I ′6. If max{C[xm](ν) : ν is a solution to φ ∧ θ} exists, then it is equal to

max{C ′[xm](ν) : (C ′, θ′, φ′) ∈ Tk+1 and ν is a solution to φ′ ∧ θ′}.

We divide the proof following the five steps identified in Section 6.1: Step I (lines 6–9), Step II
(lines 10–13), Step III (line 14), Step IV (lines 15–19) and Step V (lines 20 –22).

Step I (lines 6–9). By Item I1, θ is θk, and in it the leading and second-leading exponential
terms are 2xn−k and 2xn−k−1 , respectively. Following the pseudocode of OptILEP, throughout the
proof we write x for xn−k, and y for xn−k−1. According to Item I2, within φ(yk, rk−1) the variables
from rk−1 do not occur in exponentials, and moreover φ implies rk−1 < 2x. In line 8, OptILEP
invokes the algorithm from Lemma 4 on the pair (φ, θ). Let E1 be the set of pairs (γ, ψ) returned
by this algorithm across its non-deterministic branches. By Lemma 4, each γ is a linear program
with division in variables qk := (qn−k, . . . , qn) (called quotient variables) and u, whereas each ψ is
a linear-exponential program with divisions in variables yk+1 and r′ := (r′n−k, . . . , r

′
n), the latter

being fresh remainder variables not occurring in exponentials, and such that ψ implies r′ < 2y.

52

Section 6.2: Correctness of OptILEP

Again as in the pseudocode, we often write qx for qn−k, and rx for r′n−k. The system
x

rn−(k−1)
...
rn

 =


qx

qn−(k−1)
...
qn

 · 2y +


rx
r′n−(k−1)

...
r′n

 , (21)

yields a one-to-one correspondence between the solutions of φ ∧ θ and those of
∨

(γ,ψ)∈E1
Φ(γ, ψ),

where Φ(γ, ψ) :=
(
γ ∧ ψ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx) ∧ θ

)
. This correspondence is the identity

for the variables these two formulae share (i.e., the variables in yk).
In line 9, C is updated following the system described in Equation (21). Let C ′ be the resulting

sequence. By Item I3, C is a k-PreLEAC, and therefore C ′ takes the form:

xn−i ←
τn−i
µ

+ qn−i · 2y + r′n−i for i from k to 0, (22)

where each τn−i is a term of the form
∑k

j=i+1 ai,j · 2xn−j , with each ai,j in Z, and µ is a positive
integer. In other words, C ′ is a (k, 0)-LEAC. The claim below follows directly from the one-to-one
correspondence given by Equation (21).

Claim 13. The following properties hold:

1. The formulae ∃rk−1(φ ∧ θ) and ∃qk∃u∃r′
∨

(γ,ψ)∈E1
Φ(γ, ψ) are equivalent.

2. Consider (γ, ψ) ∈ E1, and let ν : vars(Φ(γ, ψ)) → N be a solution to Φ(γ, ψ). Then, the map
ν +

∑k−1
i=0 [rn−i 7→ ν(qn−i) · 2ν(y) + ν(r′n−i)] is a solution to φ ∧ θ.

3. If max{C[xm](ν) : ν is a solution to φ ∧ θ} exists, it is equal to

max{C ′[xm](ν) : ν is a solution to Φ(γ, ψ), for some (γ, ψ) ∈ E1}.

Step II (lines 10–13). Fix (γ, ψ) ∈ E1. In a nutshell, Step II removes the quotient variables
qk−1 = (qn−(k−1), . . . , qn) from γ. Let γ̃ be the formula obtained from γ by performing the updates
in lines 10 and 11; γ̃ and γ are equivalent, as all variables range over N and µC′ ≥ 1. Let ψ′ be
the formula in line 12, that is, ψ′ := (ψ ∧ θ ∧ (x = qx · 2y + rx) ∧ (u = 2x−y)). By definition, the
three formulae ⟨γ̃ ; ψ′⟩, ⟨γ ; ψ′⟩ and Φ(γ, ψ) are equivalent. We show that (C ′, ⟨γ̃ ; ψ′⟩) is in I0k ; and
hence that the call to ElimVars performed in line 13 adheres to the specification of this algorithm
(from Lemma 14). Below, we refer to the Items (i)–(iii) characterizing I0k (page 23):

• Item (i): We have already seen that C ′ is a (k, 0)-LEAC.

• Item (ii): By definition, γ̃ is a linear exponential program with divisions, in variables u and
qk, and in which all inequalities and equalities are such that the coefficients of the variables qk
are divisible by µC′ . Moreover, γ̃ contains an inequality µC′ · q ≥ 0 for every q in qk. Lastly,
the formula ψ′ trivially satisfies the conditions specified in Item (ii).

• Item (iii): We need to show that ⟨γ̃ ; ψ′⟩ implies the formula Ψ(C ′) given by

0 ≤ r′ < 2y ∧ 0 ≤ qk · 2y + r′ < 2x ∧ ∃xk−1
(
θ0 ∧

∧k
i=0(xn−i = ρn−i)

)
,

where ρn−i is the expression assigned to xn−i in C ′ (following Equation (22)).

53

Section 6.2: Correctness of OptILEP

Consider a solution ν : vars(⟨γ̃ ; ψ′⟩) → N to ⟨γ̃ ; ψ′⟩. This is also a solution to Φ(γ, ψ). By
definition, ψ implies 0 ≤ r′ < 2y. From the one-to-one correspondence given by Equation (21),
the map ν ′ := ν +

∑k−1
i=0 [rn−i 7→ ν(qn−i) · 2ν(y) + ν(r′n−i)] is a solution to φ ∧ θ. By Item I2,

φ implies rk−1 < 2x. Therefore, ⟨γ̃ ; ψ′⟩ implies 0 ≤ qk · 2y + r′ < 2x.

Lastly, we see that ⟨γ̃ ;ψ′⟩ also implies ∃xk−1
(
θ0∧

∧k
i=0(xn−i = ρn−i)

)
. Indeed, by Item I4, the

map ν ′′ := ν ′ +
∑k−1

i=0 [xn−i 7→
ν′(τn−i)
µC

+ ν ′(rn−i)] is a solution to φ0 ∧ θ0. Together with the
fact that ψ′ implies x = qx · 2y + rx, this means that ⟨γ̃ ; ψ′⟩ implies ∃xk−1

(
θ0 ∧

∧k
i=0(xn−i =

τn−i

µC
+ qn−i · 2y + r′n−i)

)
. By definition, ρn−i = (τn−i

µC
+ qn−i · 2y + r′n−i).

Therefore, (C ′, ⟨γ̃ ; ψ′⟩) ∈ I0k . In line 13, OptILEP calls ElimVars, eliminating the quotient vari-
ables qk−1. Let us denote by E2(γ, ψ) the set of all triples (C ′′, γ′, ψ′) such that (C ′′[xm], ⟨γ′ ; ψ′⟩) is
a pair returned by a non-deterministic execution of ElimVars with as input the formulae computed
from γ and ψ in lines 10–13. Then, by direct application of Lemma 14, we obtain:

Claim 14. Let (γ, ψ) ∈ E1. The following properties hold:

1. The formulae ∃qk−1Φ(γ, ψ) and
∨

(C′′,γ′,ψ′)∈E2(γ,ψ)
⟨γ′ ; ψ′⟩ are equivalent.

2. Consider (C ′′, γ′, ψ′) ∈ E2(γ, ψ). Let qn−(k−1) ←
τ ′′
n−(k−1)

η , . . . , qn ← τ ′′n
η be the assignments to

the variables qk−1 occurring in C ′′. Let ν : vars(⟨γ′ ;ψ′⟩)→ N be a solution to ⟨γ′ ;ψ′⟩. Then,
the map ν +

∑k−1
i=0 [qn−i 7→

ν(τ ′′n−i)

η] is a solution to Φ(γ, ψ).

3. If max{C ′[xm](ν) : ν is a solution to Φ(γ, ψ)} exists, then it is equal to

max{C ′′[xm](ν) : ν is a solution to ⟨γ′ ; ψ′⟩, for some (C ′′, γ′, ψ′) ∈ E2(γ, ψ)}.

4. For every (C ′′, γ′, ψ′) ∈ E2(γ, ψ), the pair (C ′′, ⟨γ′ ; ψ′⟩) belongs to Ikk .

Step III (line 14). Let (C ′′, γ′, ψ′) ∈ E2(γ, ψ), for some (γ, ψ) ∈ E1. Step III eliminates x
and u from γ′ by applying the algorithm from Lemma 6, which non-deterministically returns a
pair (γ′′, ψ′′). We write E3(γ

′) for the set of all such resulting pairs. By Claim 14.4, γ′ is a linear
program with divisions in variables qx and u. So, by Lemma 6, γ′′ is a linear program with divisions
in the single variable qx, and ψ′′ is a linear-exponential program with divisions in the variables y and
rx. Moreover, the equation x = qx ·2y+rx yields a one-to-one correspondence between the solutions
of γ′ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx) and those of

∨
(γ′′,ψ′′)∈E3(γ′)

(γ′′ ∧ ψ′′). This correspondence
is the identity for the variables these two formulae share (that is, y, qx and rx). Roughly speaking,
this one-to-one correspondence allows us to remove x and u without changing the set of solutions.

Recall that ψ′ := (ψ ∧ θ ∧ (x = qx · 2y + rx) ∧ (u = 2x−y)), and observe that θ ∧ (u = 2x−y) is
equal to θk+1∧ (u = 2x−y), because u = 2x−y implies 2x ≥ 2y (as u ranges over N). Then, the claim
below follows immediately from the one-to-one correspondence given by the equation x = qx ·2y+rx.

Claim 15. Let (γ, ψ) ∈ E1 and (C ′′, γ′, ψ′) ∈ E2(γ, ψ). The following properties hold:

1. The formulae ∃x∃u⟨γ′ ; ψ′⟩ and
∨

(γ′′,ψ′′)∈E3(γ′)
(γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1) are equivalent.

2. Let (γ′′, ψ′′) ∈ E3(γ
′), and ν : vars(γ′′∧ψ′′∧ψ∧θk+1)→ N be a solution to γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1.

Define g := ν(qx) ·2ν(y)+ν(rx). The map ν + [x 7→ g] + [u 7→ 2g−ν(y)] is a solution to ⟨γ′ ;ψ′⟩.

54

Section 6.2: Correctness of OptILEP

3. If max{C ′′[xm](ν) : ν is a solution to ⟨γ′ ; ψ′⟩} exists, it is equal to

max{C ′′[xm](ν) : for some (γ′′, ψ′′) ∈ E3(γ
′), the map ν is a solution to

the formula γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1 ∧ (u = 2x−y) ∧ (x = qx · 2y + rx)}.

(In Item 3, the constraints u = 2x−y and x = qx · 2y + rx are added to handle the fact that u
still appears as a free variable of C ′′. This discrepancy is resolved in line 19.)

Step IV (lines 15–19). Let (C ′′, γ′, ψ′) ∈ E2(γ, ψ) and (γ′′, ψ′′) ∈ E3(γ
′), for some (γ, ψ) ∈ E1.

Step IV removes the quotient variable qx from the linear program with divisions γ′′, and translates
the (k, k)-LEAC into a (k + 1)-PreLEAC. Let us treat each equality τ = 0 in γ′′ as a conjunction
of two inequalities: τ ≤ 0 ∧−τ ≤ 0. Since γ′′ contains only the variable qx, every inequality in it is
either of the form a ≤ b · qx or b · qx ≤ a, with b non-negative. Let us update γ′′ by rewriting these
as

⌈
a
b

⌉
≤ qx and qx ≤

⌊
a
b

⌋
, respectively. Line 15 computes the greatest non-negative integer ℓ such

that ℓ ≤ qx occurs in γ′′, while Line 16 computes the smallest integer h such that qx ≤ h occurs
in γ′′. By default, ℓ and h are initialized as 0 and ∞, respectively, so in particular we always have
ℓ ≥ 0. If h = ∞, the algorithm updates it to ℓ + mod(γ′′) in line 17, ensuring that at least one
solution to γ′′ is explored (if one exists). Let us write B(γ′′) for the set {v ∈ [ℓ..h] : γ′′(v) holds}.
Step IV concludes by guessing v ∈ B(γ′′) (line 18), to then translating C ′′ into a (k + 1)-PreLEAC
following Remark 4. If B(γ′′) is empty then γ′′ is unsatisfiable; in this case the guess instruction
fails, and the non-deterministic branch of the algorithm rejects.

Let us write E4(C
′′, γ′′) for the set of all circuits obtained from C ′′ when running line 19, with

respect to some v ∈ B(γ′′). We show the following claim (whose proof clarifies why it is sufficient
to restrict qx to values in [ℓ..h] in order to explore optimal solutions).

Claim 16. Let (γ, ψ) ∈ E1, (C ′′, γ′, ψ′) ∈ E2(γ, ψ) and (γ′′, ψ′′) ∈ E3(γ
′). We have:

1. If B(γ′′) is non-empty, then ∃qx(γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1) is equivalent to ψ′′ ∧ ψ ∧ θk+1.

2. Let v ∈ B(γ′′), and let ν : vars(ψ′′ ∧ ψ ∧ θk+1)→ N be a solution to ψ′′ ∧ ψ ∧ θk+1. Then, the
map ν + [qx 7→ v] is a solution to γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1.

3. If M := max{C ′′[xm](ν) : for some (γ′′, ψ′′) ∈ E3(γ
′), the map ν is a solution to the formula

γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1 ∧ (u = 2x−y) ∧ (x = qx · 2y + rx)} exists, it is equal to

max{C∗[xm](ν) : ν is a solution to ψ′′ ∧ ψ ∧ θk+1, for some C∗ ∈ E4(C
′′, γ′′)}.

Proof. In the formula γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1, the variable qx only occurs in γ′′. Then, the left-to-right
direction of Item 1 follows from Corollary 2, whereas the right-to-left direction holds from Item 2,
which in turn follows directly from the definition of B(γ′′).

We prove Item 3. Let Ψ := (γ′′ ∧ψ′′ ∧ψ ∧ θk+1 ∧ (u = 2x−y)∧ (x = qx · 2y + rx)). We divide the
proof depending on the variable xm we are maximizing:

case: m < n− k. Suppose M exists. The circuit C ′′ does not feature an assignment to the variable
xm, and the same is true for every C∗ ∈ E4(C

′′, γ′′). For both C ′′ and C∗, given a map ν
from their free variables plus xm to N, we have C ′′[xm](ν) = ν(xm) = C∗[xm](ν). Let ν be
a solution to Ψ. Since ν is also a solution to ψ′′ ∧ ψ ∧ θk+1, we have max{C∗[xm](ν) : ν is a
solution to ψ′′ ∧ ψ ∧ θk+1, for some C∗ ∈ E4(C

′′, γ′′)} ≥M .

55

Section 6.2: Correctness of OptILEP

Ad absurdum, assume C∗[xm](ν∗) > M , for some solution ν∗ : vars(ψ′′ ∧ ψ ∧ θk+1)→ N to
ψ′′ ∧ ψ ∧ θk+1, and C∗ ∈ E4(C

′′, γ′′). By definition, C∗ is constructed from C ′′ by replac-
ing qx with some v ∈ B(γ′′), and u with 2x−y. By Item 2, ν ′ := ν∗ + [qx 7→ v] is a solu-
tion to γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1. Define g := ν ′(qx) · 2ν

′(y) + ν ′(rx). By Claim 15.2, the map
ν ′′ := ν ′ + [x 7→ g] + [u 7→ 2g−ν

′(y)] is a solution to ⟨γ′ ; ψ′⟩. Since ψ′ implies u = 2x−y ∧ x =
qx ·2y+rx, we conclude that ν ′′ is a solution to Ψ. We have C ′′[xm](ν ′′) = ν ′′(xm) = ν∗(xm) =
C∗[xm](ν

∗) > M , contradicting the fact that M is maximal. Therefore, Item 3 holds.

case: m ≥ n− k. First, let us consider the case where h ̸= ∞ when defined in line 16. Then, all
the solutions to γ′′ lie in the interval [ℓ..h]. The set E4(C

′′, γ′′) is constructed to consider all
these solutions, and therefore Item 3 follows.

Suppose instead that h =∞ in line 16. In this case, we establish Item 3 by showing that M
does not exist. Consider an arbitrary solution ν to Ψ. Let p := mod(γ′′). Since h =∞, we note
that increasing ν(qx) by any positive multiple of p, and increasing ν(x) and ν(u) accordingly,
still yields a solution to Ψ. More precisely, if we want to increase the ν(qx) by i ·p, with i ∈ N,
the resulting map is ν + [qx 7→ i · p] + [x 7→ i · p · 2ν(y)] + [u 7→ (2i·p·2

ν(y) − 1) · 2ν(x)−ν(y)]. By
definition, C ′′ contains the assignment x← qx ·2y+rx. Therefore, arbitrarily increasing ν(qx)
results in arbitrarily large values that x evaluates to in C ′′[xm].

Let ν be a solution to Ψ. To complete the proof, it suffices to show that the value taken
by x when evaluating C ′′[xm] on ν is at most C ′′[xm](ν), in other words, that C ′′[xn−k](ν) ≤
C ′′[xm](ν). From Claim 15.2, ν is also a solution to ⟨γ′ ; ψ′⟩. By Claim 14.4, (C ′′, ⟨γ′ ; ψ′⟩)
belongs to Ikk . By definition of Ikk , ⟨γ′ ; ψ′⟩ implies ∃qk−1∃xk−1

(
θ0 ∧

∧t
i=1(yi = ρi)

)
, where

(y1 ← ρ1, . . . , yt ← ρt) = C ′′. The variables in qk−1 and xk−1 are all among y1, . . . , yt,
meaning that there is exactly one evaluation for these variables for which θ0∧

∧t
i=1(yi = ρi) is

satisfied: the values that these variables take when C ′′[xm] is evaluated on ν. Since m ≥ n−k,
the ordering θ0 implies xn−k ≤ xm. Hence, when evaluating C ′′[xm] on ν, the value taken
by x is at most C ′′[xm](ν), as required.

Step V (lines 20–22). These lines simply prepare the linear-exponential system for the next
loop iteration. Let (γ, ψ) ∈ E1, (C ′′, γ′, ψ′) ∈ E2(γ, ψ), (γ′′, ψ′′) ∈ E3(γ

′) and C∗ ∈ E4(C
′′, γ′′).

Line 20 sets r′ as the remainder variables for the next iterations of the loop (in this proof, rk).
Line 21 sets φ∗ := ψ ∧ ψ′′ as the formula for the next iteration, whereas line 22 updates θ to θk+1.
This concludes the body of the while loop, and Tk+1 is the set of all possible triples (C∗, θk+1, φ

∗).

Let us now complete the proof by showing that all items in the loop invariant are satisfied.

• Item I1: θk+1 is indeed the ordering required by this item.

• Item I2: In φ∗ = ψ ∧ ψ′′, both ψ and ψ′′ are linear-exponential programs with divisions in
variables yk+1 and r′. Moreover, ψ (which was defined in Step I), implies r′ < 2y, as required.

• Item I3: This follows directly from the manipulation performed in line 19 to construct C∗,
recalling that C ′′ is a (k, k)-LEAC. Below, let C∗ = (xn−k ←

τ∗n−k

µ∗ +r′n−k , . . . , xn ←
τ∗n
µ∗ +r

′
n).

• Item I4: We must show that, given a solution ν : vars(φ∗ ∧ θk+1)→ N to φ∗ ∧ θk+1, the map
ν +

∑k
i=0[xn−i 7→ gn−i], where gn−i is the value taken by xn−i when evaluating C∗[xm] on

ν, is a solution to φ0 ∧ θ0. In a nutshell, this is shown by appealing to the second Items in

56

Section 6.2: Correctness of OptILEP

Claims 13–16, to then apply the induction hypothesis. Indeed, observe that starting from ν,
these Items construct a solution ν∗ for φ∧ θ. Recall that the initial circuit C is a k-PreLEAC

xn−i ←
τn−i
µ

+ rn−i for i from k − 1 to 0.

This circuit is then manipulated into the circuit C ′

x← qx · 2y + rx,

xn−i ←
τn−i
µ

+ qn−i · 2y + r′n−i for i from k − 1 to 0,

and C ′′ is constructed from C ′ by adding assignments qn−i ←
τ ′′n−i(u,qx)

η for every i ∈ [0..k−1].
Lastly, C∗ is essentially obtained from C ′′ by replacing qx the integer v from line 18 , and u
with 2x−y. By induction hypothesis, the map obtained from ν∗ by adding

∑k−1
i=0 [xn−i 7→ tn−i],

where tn−i is the value taken by xn−i when evaluating C[xm] on ν∗ is a solution to φ0 ∧ θ0.
Then, because of the updates required to obtain C∗ from C, it suffices to show that

ν∗(x) = v · 2ν(y) + ν(rx),

ν∗(rn−i) =
τ ′′n−i(2

ν∗(xn)−ν(y), v)

η
· 2ν(y) + ν(r′n−i) for i from k − 1 to 0.

This follows directly from the identities below:

ν ′ = ν + [qx 7→ v] HClaim 16.2I

ν ′′ = ν ′ + [x 7→ g] + [u 7→ 2g−ν(y)], where g := v · 2ν(y) + ν(rx) HClaim 15.2I

ν ′′′ = ν ′′ +
∑k−1

i=0 [qn−i 7→
ν′′(τ ′′n−i)

η] HClaim 14.2I

ν∗ = ν ′′′ +
∑k−1

i=0 [rn−i 7→ ν ′′′(qn−i) · 2ν(y) + ν(r′n−i)] HClaim 13.2I

Let us now show Item I ′5; then Item I5 follows directly from the induction hypothesis:

∃x∃rk−1(φ ∧ θ)
⇐⇒ ∃x∃qk∃u∃r′

∨
(γ,ψ)∈E1

Φ(γ, ψ) HClaim 13.1I

⇐⇒ ∃x∃qx∃u∃r′
∨

(γ,ψ)∈E1, (C′′,γ′,ψ′)∈E2(γ,ψ)
⟨γ′ ; ψ′⟩ HClaim 14.1I

⇐⇒ ∃qx∃r′
∨

(γ,ψ)∈E1, (C′′,γ′,ψ′)∈E2(γ,ψ), (γ′′,ψ′′)∈E3(γ′)
(γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1) HClaim 15.1I

⇐⇒ ∃r′
∨

(γ,ψ)∈E1, (C′′,γ′,ψ′)∈E2(γ,ψ), (γ′′,ψ′′)∈E3(γ′) s.t.B(γ′′)̸=∅ (ψ
′′ ∧ ψ ∧ θk+1) HClaim 16.1I

⇐⇒ ∃r′
∨

(C∗,θk+1,φ∗)∈Tk+1
(φ∗ ∧ θk+1) Hdef. of Tk+1I

Lastly, we show Item I ′6, which implies Item I6 by induction hypothesis. Suppose that M :=
max{C[xm](ν) : ν is a solution to φ ∧ θ} exists. Then,

M = max{C ′[xm](ν) : ν is a solution to Φ(γ, ψ), for some (γ, ψ) ∈ E1} HClaim 13.3I
= max{C ′′[xm](ν) : ν is a solution to ⟨γ′ ; ψ′⟩, for some (γ, ψ) ∈ E1,

and (C ′′, γ′, ψ′) ∈ E2(γ, ψ)} HClaim 14.3I
= max{C ′′[xm](ν) : ν is a solution to γ′′ ∧ ψ′′ ∧ ψ ∧ θk+1 ∧ (u = 2x−y) ∧ (x = qx · 2y + rx)

for some (γ, ψ) ∈ E1, (C ′′, γ′, ψ′) ∈ E2(γ, ψ), and (γ′′, ψ′′) ∈ E3(γ
′)} HClaim 15.3I

57

Section 6.3: Complexity of OptILEP

= max{C∗[xm](ν) : ν is a solution to ψ′′ ∧ ψ ∧ θk+1, for some (γ, ψ) ∈ E1,
(C ′′, γ′, ψ′) ∈ E2(γ, ψ), (γ′′, ψ′′) ∈ E3(γ

′), and C∗ ∈ E4(C
′′, γ′′)} HClaim 16.3I

= max{C∗[xm](ν) : ν is a solution to φ∗ ∧ θk+1, for some (C∗, θk+1, φ
∗) ∈ Tk+1} Hdef. of Tk+1I

Therefore, the loop invariant holds, completing the proof of the proposition.

6.3 Complexity of OptILEP

We now provide the complexity analysis of OptILEP, which requires tracking several parameters
of linear-exponential systems. For a linear-exponential program with divisibilities φ, we track:

• The parameters #φ, ∥φ∥1 and mod(φ), defined in the preliminaries (page 14).

• The linear norm ∥φ∥L := max{∥τ∥L : τ is a term appearing in an equality or inequality of φ}.
Given a linear-exponential term τ =

∑n
i=1

(
ai · xi + bi · 2xi +

∑n
j=1 ci,j · (xi mod 2xj)

)
+ d, we

define its linear norm as ∥τ∥L := max{|ai| , |ci,j | : i, j ∈ [1..n]}.

• Consider an ordering of exponentiated variables θ := (θ(x) := 2xn ≥ 2xn−1 ≥ · · · ≥ 2x0 = 1).
Let r be the variables from φ that are not in x. We track the set of the least significant terms

lst(φ, θ) :=
{
± ρ : ρ is the least significant part of a term τ appearing in

an equality or inequality τ ∼ 0 of φ, with respect to θ
}
.

The least significant part of a term a · 2xn + b · xn + τ ′(x0, . . . , xn−1, r) with respect to θ is
defined as the term b · xn + τ ′.

For a k-PreLEAC C, we track the growth of the parameters µC and ξC .

Remark 5. From the above parameters one can bound the sizes of φ and C: the size of φ(x) is
in poly(#φ,#x, log∥φ∥1, logmod(φ)), and the size of a k-PreLEAC C is in poly(k, logµC , log ξC).

The complexity of Steps I and III from [CMS24]. For the complexity analysis of lines 8
and 14 of OptILEP, which correspond to Steps I and III of [CMS24], we refer directly to the
analysis carried out in [CMS24]. (We remind the reader that Appendix B gives more information
on these two steps). This analysis is reported in the following two lemmas.

Lemma 22 [CMS24]. The algorithm from Lemma 4 (Step I) runs in non-deterministic polynomial
time. Consider its execution on an input (θ, φ) where θ(x) is an ordering of exponentiated variables
and φ(x, r) is a linear exponential program with divisions. In each non-deterministic branch β, the
algorithm returns a pair (γ, ψ), where γ(qx, q, u) is a linear program with divisions and ψ(y, rx, r′)
a linear-exponential program with divisions, such that (for every ℓ, s, a, c, d ≥ 1):

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | d

then



#lst(ψ, θ′) ≤ ℓ+ 2 · k
#ψ ≤ s+ 6 · k + 2 · ℓ
∥ψ∥L ≤ 3 · a
∥ψ∥1 ≤ 4 · c+ 5

mod(ψ) | d

and


#γ ≤ s+ 2 · k
∥γ[2u / u]∥L ≤ 3 · a
∥γ∥1 ≤ 2 · c+ 3

mod(γ) | d

where θ′ is the ordering obtained from θ by removing its largest term 2x, and k := 1 + #r.

58

Section 6.3: Complexity of OptILEP

Below, ϕ denotes Euler’s totient function. Recall that given a positive integer a,

ϕ(a) :=
∏k
i=1

(
(pi − 1) · pei−1i

)
, where pe11 · · · p

ek
k is the prime factorization of a. (23)

Lemma 23 [CMS24]. The algorithm from Lemma 6 (Step III) runs in non-deterministic polynomial
time. Consider its execution on an input linear program with divisions γ′. In each non-deterministic
branch β, the algorithm returns a pair (γ′′, ψ′′), where γ′′ is a linear program with divisions and ψ′′

is a linear-exponential program with divisions, such that (for every s, a, c, d ≥ 1):

if


#γ′ ≤ s
∥γ′[2u / u]∥L ≤ a
∥γ′∥1 ≤ c
mod(γ′) | d

then


#γ′′ ≤ s+ 2

∥γ′′∥L ≤ a
∥γ′′∥1 ≤ max(25c3, c · d)
mod(γ′′) | lcm(d, ϕ(d))

and


#ψ′′ ≤ 3

∥ψ′′∥L ≤ 1

∥ψ′′∥1 ≤ 12 + 4 · log(max(c, d))

mod(ψ′′) | ϕ(d)

The complexity of performing one iteration of the main loop is given in the next lemma:

Lemma 24. Consider the execution of Algorithm 6 on an linear-exponential program φ(x1, . . . , xn),
with n ≥ 1. Let (φ, θ, C) be the system, circuit, and ordering obtained after the kth iteration of the
while loop of line 5. The (k+1)th iteration of the while loop runs in non-deterministic polynomial
time in the bit sizes of φ and C. Each non-deterministic execution of the loop updates the triple
(φ, θ, C) into a triple (φ′, θ′, C ′) such that (for every ℓ, s, a, c, d ≥ 1):

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | d

then



#lst(φ′, θ′) ≤ ℓ+ 2 · k + 3

#φ′ ≤ s+ 6 · k + 2 · ℓ+ 3

∥φ′∥L ≤ 3 · a
∥φ′∥1 ≤ 12 + 4 ·max(c, log β)

mod(φ′) | lcm(d, ϕ(α · d))
ξC′ ≤ ξC · (3 · k · a)k + 26(k + 1) · β4

µC′ ≤ µC · (3 · k · a)k,

with α ∈ [1..(3 · k · µC · a)k
2
], and β := d ·

(
27(k + 1) · µC ·max(c, log(ξC + µC))

)3(k+2)2.

Proof. Throughout the proof, µ is short for µC . We analyze how the parameters evolve over the
five steps of the while loop of OptILEP.

Step I (lines 6–9). Let γ and ψ be the systems computed by the algorithm in line 8. Directly
from Lemma 22, we derive the following bounds on their parameters:

#lst(ψ, θ′) ≤ ℓ+ 2 · k
#ψ ≤ s+ 6 · k + 2 · ℓ
∥ψ∥L ≤ 3 · a
∥ψ∥1 ≤ 4 · c+ 5

mod(ψ) | d

and


#γ ≤ s+ 2 · k
∥γ[2u / u]∥L ≤ 3 · a
∥γ∥1 ≤ 2 · c+ 3

mod(γ) | d

Note that the updates performed to C in line 9 do not change the values of ξC and µ.

59

Section 6.3: Complexity of OptILEP

Step II (lines 10–13). From Lemma 4, line 10 adds k+1 inequalities of the form q ≥ 0 to γ (one
for each quotient variable). The following line 11 multiplies all (in)equalities in γ by µ. Therefore,
when the program reaches line 13, the formula γ satisfies the following:

#γ ≤ s+ 3k + 1

∥γ[2u / u]∥L ≤ 3 · µ · a
∥γ∥1 ≤ µ · (2 · c+ 3)

mod(γ) | d

Observe that the formula ψ′ constructed in line 12 has bit size polynomial in ψ′. The proce-
dure ElimVars does not update this formula (Lemma 14), moreover ψ′ is not used again within
the loop. Therefore, no further analysis on ψ′ is necessary. Together with ψ′, the call to ElimVars
in line 13 returns a linear program with divisions γ′ and a (k, k)-LEAC C∗. (More precisely, we
have (C∗, ⟨γ′ ; ψ′⟩) ∈ Ikk .) We bound the parameters of these two objects using Lemma 21. In
order to simplify the analysis, let us define M := 26 · µ · max(c, log(ξC + µ)). The values L,Q,U
and R defined in Lemma 21 are all bounded by M . Furthermore, from the bound on ∥γ[2u / u]∥L,
we have Q ≤ 3 · µ · a, and therefore Q

µ ≤ 3 · a.

number of constraints in γ′: Directly from Lemma 21.1, #γ′ ≤ s+ 4 · k + 1.

linear norm of γ′: Since (C∗, ⟨γ′ ; ψ′⟩) ∈ Ikk , the system γ′ only features the variable u and the
quotient variable qn−k. By Lemma 21.3, the linear norm of γ′ is thus:

∥γ′∥L ≤ max
(
µ · (k + 1)k+1

(
Q
µ

)k+1
, (k + 1)k+1

(
Q
µ

)k
U
)

≤ max
(
µ · (3 · a · (k + 1))k+1, (k + 1)k+1(3 · a)kM

)
≤ (3 · (k + 1) · a)k+1M. Has µ ≤MI

1-norm of γ′: First, by Lemma 21.3 the bound on the constants of the terms from terms(γ′) is

((k + 1) ·Q)2(k+2)2

µ2k2
·mod(γ) ·R

≤ ((k + 1) ·M)3(k+2)2d. Has R,Q ≤M and mod(γ) ≤ dI

Let us define N := 3 ·((k+1) ·M)3(k+2)2 . Terms in terms(γ′) are of the form b1 ·q+b2 ·2u+b3,
where |b1| and |b2| are bounded by ∥γ′∥L ≤ (3 · (k + 1) · a)k+1M . Therefore, ∥γ′∥1 ≤ N · d.

modulus of γ′: By Lemma 21.4, mod(γ′) | α ·mod(γ), for some positive integer α ≤ (3 · k ·µ · a)k2 .
(Observe that then mod(γ′) ≤ (k ·M)k

2
d; we will silently use this fact when computing the

bounds in Equation (24) below.)

denominator ηC∗: From Lemma 21.5, ηC∗ = µ · g, for some g ≤ kk(Qµ)
k ≤ (3 · k · a)k.

denominator µC∗ and parameter ξC∗: by Lemma 21.2, µC∗ = µ and ξC∗ = ξC .

numerators in the new assignments of C∗: Let us also observe that the terms τ occurring in
assignments q ← τ

η of C∗, with q quotient variable, are linear terms in the variables u and qn−k.
From Lemma 21.3, ∥τ∥L ≤ (3 · (k + 1) · a)k+1 ·M , whereas the constant of τ is bounded by
((k + 1) ·M)3(k+2)2d (same computations as for ∥γ′∥L and ∥γ′∥1).

60

Section 6.3: Complexity of OptILEP

Step III (line 14). Starting from γ′, line 14 produces two formulae γ′′ and ψ′′. From the bounds
we have just obtained from γ′′, and by appealing to Lemma 23, we get:


#γ′′ ≤ s+ 4k + 3

∥γ′′∥1 ≤ 25N3d3

mod(γ′′) | lcm(α · d, ϕ(α · d))
and


#ψ′′ ≤ 3

∥ψ′′∥L ≤ 1

∥ψ′′∥1 ≤ 12 + 4 · log(N · d)
mod(ψ′′) | ϕ(α · d),

(24)

for some positive integer α ≤ (3 · k · µ · a)k2 .

Step IV (lines 15–19). The integers ℓ and h in these lines are bounded by ∥γ′′∥1 + mod(γ′′).
Therefore, the value v chosen in line 18 satisfies 0 ≤ v ≤ ∥γ′′∥1+mod(γ′′). Observe that mod(γ′′) ≤
(α · d)2 ≤ (k ·M)2k

2
d2 ≤ N · d2. Hence, |v| ≤ 26N3d3. In line 19, the algorithm constructs the

(k+1)-PreLEAC C ′ whose bounds we are interested in. Following Remark 4, we obtain the bounds
on µC′ and ξC′ reported in the statement of the lemma:

denominator µC′: Remark 4 tells us that µC′ = ηC∗ ≤ µ · (3 · k · a)k.

parameter ξC′: In our case, λ from Remark 4 is equal to ηC∗
µ = g. We have:

ξC′ := |ηC∗ · v|︸ ︷︷ ︸
from assignment to xn−k

+
∑k−1

i=0

(
|cn−i · v + dn−i|+ |λ · (ai,k + bn−i)|+

∑k−1

j=i+1
|λ · ai,j |

)
︸ ︷︷ ︸

from assignment to xn−i

≤ v ·
(
ηC∗ +

∑k−1

i=0
(|cn−i|+ |dn−i|+ g · |bn−i|)

)
+ g · ξC . (25)

Observe now that |cn−i|, |dn−i| and |bn−i| are integers occurring in assignments q ← τ
η of C∗,

with q quotient variable. From the bounds already deduced for these integers, we have

g · |bn−i| ≤ (3 · k · a)k(3 · (k + 1) · a)k+1M ≤ N
3 ,

and, similarly, |cn−i| ≤ N
3 and |dn−i| ≤ N

3 · d. Resuming the computation in Equation (25):

ξC′ ≤ v · (ηC∗ + k ·N · d) + g · ξC ≤ v · (µ · (3 · k · a)k + k ·N · d) + g · ξC
≤ 26(k + 1) ·N4d4 + (3 · k · a)kξC .

The bound on ξC′ in the statement of the lemma then follows from

N · d ≤ 3 · d · ((k + 1) ·M)3(k+2)2 ≤ 3 · d · ((k + 1) · 26µ ·max(c, log(µ+ ξC)))
3(k+2)2 ≤ β.

Step V (lines 20–22). We have φ′ := ψ ∧ ψ′′. Then, the bounds on the parameters of φ′ given
in the statement of the lemma are obtained by simply combining those computed for ψ and ψ′′.

Moving to the running time of performing one iteration of the body of the while loop, the bounds
established above show that all operations performed (excluding calls to subprocedures) involves
objects of polynomial size with respect to the sizes of φ and C. It is simple to see that all these
operations (e.g., those in lines 9 or 16) can be performed in polynomial time. Additionally, the guess
in line 18 ranges over an interval of integers with polynomial bit length. Then, the non-deterministic
polynomial-time complexity of one iteration of the loop follows directly from Lemmas 21 to 23.

61

Section 6.3: Complexity of OptILEP

The complexity of performing k iterations of the main loop. To complete the complexity
analysis of OptILEP it now suffices to iterate the bounds computed in Lemma 24 across multiple
iterations of the main loop of the algorithm.

Lemma 25. Proof in
page 104

Algorithm 6 runs in non-deterministic polynomial time. Consider its execution on an
integer linear-exponential program φ(x1, . . . , xn) with n ≥ 1. Let (φk, θk, Ck) the system, circuit,
and ordering obtained at the end of kth iteration of the while loop of line 5, in any non-deterministic
branch of the algorithm. Then, the following bounds hold (for every ℓ, s, a, c ≥ 1):

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | 1

then



#lst(φk, θk) ≤ ℓ+ 3 · k2

#φk ≤ s+ 3 · k3 + 2 · ℓ · k
∥φk∥L ≤ 3ka

∥φk∥1 ≤ 38(k+1)c

mod(φk) ≤ 32·k
8
a2·k

7

ξCk
≤ 38(k+2)8c8(k+2)7

µCk
≤ 3k

3
ak

2
.

Proof sketch. The proof is by induction on k, assuming as the induction hypothesis that the bounds
stated hold at the kth iteration of the loop. This hypothesis, combined with Lemma 24, is sufficient
to establish all bounds except for the one given to mod(φk), which we discuss next.

Let (φ0, C0), . . . , (φk, Ck) denote the formulae and PreLEACs constructed by the algorithm dur-
ing the first k iterations of the while loop. We are looking to bound mod(φk+1). In particular, φ0

is the linear-exponential program given as input to OptILEP, and C0 is the empty 0-PreLEAC ini-
tialized in line 1. By Lemma 24, for every i ∈ [0..k], there is αi+1 ∈ [1..(3 · i · µCi · ∥φi∥L)i

2
] such that

mod(φi+1) is a divisor of lcm(mod(φi), ϕ(αi+1 ·mod(φi))). Let us define α∗ := lcm(α1, α2, . . . , αk+1),
and consider the integers c0, . . . , ck+1 such that c0 := 1 and ci+1 := lcm(ci, ϕ(α

∗ · ci)) for i ∈ [0..k].

Claim 17. For every j ∈ [0..k + 1], mod(φj) divides cj.

Proof. The proof is by induction on j.

base case: j = 0. We have mod(φ0) = 1 = c0.

induction step: Assume that the claim holds for j ∈ [0..k]. Then,

mod(φj+1) := lcm(mod(φj), ϕ(αj+1 ·mod(φj)))
| lcm(cj , ϕ(αj+1 ·mod(φj))) Hmod(φi) | ci by induction hypothesisI
| lcm(cj , ϕ(α

∗ · cj)) Hq | r implies ϕ(q) | ϕ(r)I
= cj+1.

Given Claim 17, in order to bound mod(φk+1) it suffices to bound ck+1. The next lemma
from [CMS24] will help us analyze this integer.

Lemma 26 [CMS24, Lemma 7]. Let α ≥ 1 be in N. Let b0, b1, . . . be the integer sequence given by
the recurrence b0 := 1 and bi+1 := lcm(bi, ϕ(α · bi)). For every i ∈ N, bi ≤ α2·i2.

By Lemma 26, ck+1 ≤ (α∗)2(k+1)2 . Therefore, ck+1 ≤ 32(k+1)8a2(k+1)7 follows from

α∗ ≤
∏k

i=0
(3 · i · µi · ∥φi∥L)i

2

≤ (3 · k · (3k3ak2) · (3ka))k2(k+1) Hby induction hypothesisI

≤ 3(k+1)6a(k+1)5 .

62

Section 6.4: Maximization and minimization of arbitrary linear-exponential terms

6.4 Maximization and minimization of arbitrary linear-exponential terms

Together, Sections 6.2 and 6.3 establish Theorem 1 for the case of maximizing a variable x under a
linear-exponential program. We now complete the proof of Theorem 1 by extending the argument
to general linear-exponential objective functions, and to include the case of minimization.

Let us consider first the maximization problem

maximize τ(x) subject to φ(x), (26)

where τ is a linear-exponential term, and φ an integer linear-exponential program. Let z be a
variable not in x. Since variables in ILEP range over N, a common approach to solving this problem
is to distinguish two cases based on the sign of τ(x) in the optimal solution The variable z is used
to represent the value of τ(x), adjusting its sign accordingly when assuming τ to be negative. Here
is the corresponding pseudocode:
1: if (maximize z subject to φ(x) ∧ z = τ(x)) has an optimal solution σ1 then return σ1

2: if φ(x) ∧ τ(x) ≥ 0 is satisfiable then return “no optimal solution exists”
3: if (minimize z subject to φ(x) ∧ −z = τ(x)) has an optimal solution σ2 then return σ2

4: return “φ is unsatisfiable”
From Sections 6.2 and 6.3, we know that the maximization problem in line 1 admits an optimal

solution, then it has one representable with a polynomial-size ILESLP. Regarding the minimization
problem in line 3, since z ranges over N, a minimal solution is guaranteed to exist as soon as
φ(x) ∧ −z = τ(x) is satisfiable. Again from Sections 6.2 and 6.3 when φ(x) ∧ −z = τ(x) is
satisfiable, then there is a solution representable with a polynomial-size ILESLP σ. Then, to solve
the minimization problem in line 3, we can consider the equivalent maximization problem “maximize
JσK (z)− z subject to φ(x)∧−z = τ(x)”, since JσK (z)− z attains its maximum precisely when z is
minimal. Given that JσK (z)− z is non-negative, this problem can be reformulated as “maximize w
subject to φ(x) ∧ (−z = τ(x)) ∧ (w = JσK (z)− z)”, where w is a fresh variable. Of course, JσK (z)
may not be representable in binary using polynomially many bits. Instead, we incorporate directly
the ILESLP σ directly into the constraints of the linear-exponential program. To do so, we first
rename every variable y occurring in σ as y′ to avoid conflicts with the variables x, z and w. Let σ
be now of the form (y′0 ← ρ1, . . . , yt ← ρt). We then solve the following maximization problem

maximize w subject to φ(x) ∧ (−z = τ(x)) ∧ (w = z′ − z) ∧
∧t
i=1(y

′
i = ρi).

From Sections 6.2 and 6.3, if this problem has an optimal solution, then it has one representable
with a polynomial-size ILESLP. We conclude that the same holds for the problem in Equation (26).

We can treat the minimization problem

minimize τ(x) subject to φ(x),

in a similar way. Again following the sign of τ , this problem is solved as follows:
1: if (maximize z subject to φ(x) ∧ −z = τ(x)) has an optimal solution σ1 then return σ1

2: if φ(x) ∧ τ(x) < 0 is satisfiable then return “no optimal solution exists”
3: if (minimize z subject to φ(x) ∧ z = τ(x)) has an optimal solution σ2 then return σ2

4: return “φ is unsatisfiable”
We already know that if one of the optimization problems in the code above has an optimal solution,
then it has one representable by a polynomial-size ILESLP. This concludes the proof of Theorem 1.

63

Part II

Deciding properties of ILESLPs
In this second part of the paper, we discuss algorithms for deciding NatILESLP and DivILESLP (Sec-
tions 7 and 8, respectively), and for computing ILESLPs representing terms of the form (x mod 2y)
(Section 9). This part is almost completely independent of Part I, the sole exception being an appeal
to Lemma 10 when proving that NatILESLP is in P. We refer the reader to section Section 1.1 for
the definition of ILESLPs.

Some notation and an auxiliary lemma. Let σ := (x0 ← ρ0, . . . , xn ← ρn) be an ILESLP.
We write e(σ) (respectively, d(σ)) for the absolute value of the product of all numerators m ̸= 0
(respectively, denominators g) occurring in rational constants m

g of the scaling expressions m
g · xj

in σ. By convention, this product is defined to be 1 when taken over an empty set. Given an
expression E :=

∑
j∈J aj · 2xj , where J ⊆ [0..n] and each aj is an integer, we write JσK (E) for the

number obtained by evaluating E on σ, that is, JσK (E) :=
∑

j∈J aj · 2JσK(xj). The next auxiliary
lemma recasts σ into a form that is more amenable to our subsequent algorithms.

Lemma 27. Proof in
page 107

Consider an ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn) and let i ∈ [0..n]. One can
compute, in time polynomial in the size of σ, an expression Ei of the form

∑i−1
j=0 ai,j · 2xj such that

JσK (Ei) = d(σ) · JσK (xi). For every j ∈ [0..i− 1], the coefficient ai,j is (i) an integer whose absolute
value is bounded by 2i · e(σ) · d(σ), and (ii) non-zero only if JσK (xj) ≥ 0.

Proof sketch. Given i ∈ [0..n], let σi denote the ILESLP (x0 ← ρ0, . . . , xi ← ρi) obtained by
truncating σ after i+ 1 assignments. We remark that d(σi) divides d(σj) for every i ≤ j.

Inductively on i, one shows that it is possible to compute a vector of rational numbers bi =
(bi,0, . . . , bi,i−1) satisfying JσK (xi) =

∑i−1
j=0 bi,j · 2JσK(xj), where each bi,j is of the form m

d(σi)
for some

m ∈ Z satisfying |m| ≤ 2i · e(σi) · d(σi), and m ̸= 0 only if JσK (xj) ≥ 0. With this result at hand,
the expression Ei in the statement of the lemma is computed by multiply all these rational numbers
by d(σ), as to make them all integers. In particular, if bi,j = m

d(σi)
, then in Ei the coefficient of 2xj

is ai,j := m · d(σ)d(σi)
. Hence, |ai,j | ≤ 2i · e(σi) · d(σi) · d(σ)d(σi)

≤ 2i · e(σ) · d(σ). Note that the bit size of
each ai,j is thus polynomial in the size of σ. With this in mind, the fact that the whole computation
can be performed in polynomial time follows immediately from the inductive proof.

7 Deciding NatILESLP in polynomial time

NatILESLP

Input: An ILESLP σ.
Question: Is JσK• ≥ 0 ?

The pseudocode of our procedure for deciding NatILESLP is given in Algorithm 7. In a nutshell,
given an ILESLP σ = (x0 ← ρ0, . . . , xn ← ρn), the algorithm constructs a map M with the following
property: for every i, j ∈ [0..n], the entry M(i, j) stores the value of the difference JσK (xi)−JσK (xj)
up to a certain threshold C defined in line 1. If the absolute value of this difference exceeds the
threshold, then M(i, j) is instead equal to +∞ or −∞, depending on the sign of the difference.
After constructing M , the algorithm checks whether M(n, 0) ≥ 0 to decide if JσK (xn) ≥ 0.

64

Section 7: Deciding NatILESLP in polynomial time

Algorithm 7 A polynomial-time algorithm for NatILESLP.
Input: ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn).
1: C ← 8 · (bit size of σ) + 8

2: let, for i ∈ [0..n], Ei be an expression
∑i−1

j=0 aj ·2xj , with all aj ∈ Z, and JσK (xi) =
∑i−1

j=0 aj ·2
JσK(xj)

d(σ)

3: M ← empty map from [0..n]2 to [−C..C] ∪ {−∞,∞}
4: for i from 0 to n do
5: M(i, i)← 0
6: let {ℓ0 = 0, . . . , ℓm}maximal subset of [0..i−1] such thatM(ℓk, ℓk−1) ≥ 0 for every k ∈ [1..m]
7: for j from 0 to i− 1 do
8: E ← Ei − Ej ▷ E is of the form

∑m
k=0 ck2

xℓk

9: for k from m to 1 do
10: if M(ℓk, ℓk−1) ≤ C then replace 2xℓk with 2M(ℓk,ℓk−1)2

xℓk−1 in E
11: else
12: a← coefficient of 2xℓk in E
13: if a > 0 then M(i, j)← +∞
14: if a < 0 then M(i, j)← −∞
15: if a ̸= 0 then break
16: if E is of the form h · 2x0 for some h ∈ Z then
17: if h

d(σ) ∈ [−C..C] then M(i, j)← h
d(σ)

18: else M(i, j)← if h
d(σ) > 0 then+∞ else−∞

19: M(j, i)← −M(i, j)

20: return true if M(n, 0) ≥ 0 else false

Following Lemma 27, for every i ∈ [0..n], the algorithm starts by “flattening” the expression ρi of
xi into the form Ei

d(σ) , where Ei =
∑i−1

k=0 ak ·2xk with a0, . . . , ai−1 integers (line 2). The computation
of M(i, j) with j < i occurs at the (i+1)th iteration of the loop of line 4 and (j +1)th iteration of
the loop of line 7. To compute M(i, j), the expression E := Ei − Ej is considered (line 8). This is
again of the form

∑i−1
k=0 bk · 2xk , where bk ̸= 0 only if JσK (xk) ≥ 0 (again by Lemma 27). Since all

entries of M involving variables x0, . . . , xi−1 are already computed in the earlier iterations, we can
reduce E to an expression

∑m
k=0 ck ·2

xℓk , where ℓ0, . . . , ℓm ∈ [0..i−1] are the indices of the variables
xℓ with JσK (xℓ) ≥ 0, in ascending order (see line 6).

Intuitively, if JσK (xℓm) is large enough compared to JσK (xℓm−1), then the sign of
∑m

k=0 ck·2
JσK(xℓk)

is solely determined by the sign of the integer cm (assuming cm ̸= 0). The threshold C has been
chosen to capture this idea of xℓm being “large enough”. In particular, one can show that for every
k ∈ [1..m], if JσK (xℓk)−JσK (xℓk−1

) > C and ck ̸= 0, then
∣∣∣ck2JσK(xℓk)

∣∣∣ > ∣∣∣∑k−1
j=0 cj2

JσK(xℓj)
∣∣∣+d(σ) ·C.

So, if M(ℓm, ℓm−1) > C and cm ̸= 0, we have M(i, j) = ±∞ (lines 12–15). Otherwise, if JσK (xℓm) is
small compared to JσK (xℓm−1), that is, M(ℓm, ℓm−1) ≤ C, we replace 2xℓm with 2M(ℓm,ℓm−1) · 2xℓm−1

in E, and iterate the same reasoning; now on variables xℓm−1 and xℓm−2 . At the end of the loop
of line 9, either M(i, j) has been set to ±∞, or we have reduced E into an expression of the form
h · 2x0 . In the latter case, we have JσK (xi)− JσK (xj) = h·2JσK(x0)

d(σ) = h
d(σ) . If h

d(σ) belongs to [−C..C],
the algorithm sets M(i, j) = h

d(σ) (line 17). Else, M(i, j) is set to ±∞, according to the sign of h
d(σ) .

To prove that Algorithm 7 decides NatILESLP in polynomial time, the key observation is that C
is linear in the bit size of σ, and thus so is the bit size of the integers 2M(ℓk,ℓk−1) computed in line 10.

We now formalize the above explanation, proving correctness and polynomial running time

65

Section 7: Deciding NatILESLP in polynomial time

of Algorithm 7. The correctness proof centers on the semantics of the map M .

Lemma 28. Given an input ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn), Algorithm 7 constructs a map
M : [0..n]2 → [−C..C] ∪ {−∞,∞}, where C := 8 · (bit size of σ) + 8. For all i, j ∈ [0..n], this map
satisfies M(i, j) = TC(JσK (xi)− JσK (xj)), where TC is the truncation function

TC(g) :=


g if g ∈ [−C..C]
−∞ if g < −C
+∞ if g > C

for every g ∈ Z.

Proof. The map M is initialized as empty in line 3. Let E0, . . . , En be the expressions computed in
line 2, following Lemma 27. They satisfy JσK (Ei) = d(σ) · JσK (xi), for every i ∈ [0..n]. We prove
by induction on i ∈ N that after the (i+ 1)th iteration of the outer for loop of line 4, the map M
satisfies M(j, k) = TC(JσK (xj)− JσK (xk)) for every j, k ∈ [0..i].

base case: i = 0. In the first iteration, line 5 sets M(0, 0) = 0 as required. The inner loop of line 7
does not execute for i = 0 as the range of j is empty.

induction hypothesis. For every j, k ∈ [0..i− 1], M(j, k) = TC(JσK (xj)− JσK (xk)).

induction step: i ≥ 1. In the (i + 1)th iteration, the algorithm sets M(i, j) and M(j, i) for all
j ∈ [0..i]. Line 5 correctly sets M(i, i) = 0. For each j ∈ [0..i − 1], the inner loop of line 7
computes M(i, j) and M(j, i). As M(j, i) = −M(j, i) by line 19, it suffices to show that the
computed M(i, j) = TC(JσK (xi)− JσK (xj)) for all j ∈ [0..i− 1].

In line 6, the algorithm computes the maximal subset of indices {ℓ0 = 0, . . . , ℓm} ⊆ [0..i− 1]
such that M(ℓk, ℓk−1) ≥ 0 for every k ∈ [1..m]. By the induction hypothesis, M(ℓk, ℓk−1) =
TC(JσK (xℓk) − JσK (xℓk−1

)), which implies 0 = JσK (xℓ0) ≤ JσK (xℓ1) ≤ . . . ≤ JσK (xℓm). More-
over, by the maximality of this subset, the variables xℓ0 , . . . , xℓm are exactly those among
x0, . . . , xi−1 for which JσK is non-negative.

Computation of M(i, j): This computation occurs at the (j + 1)th iteration of the inner for
loop of line 7, with j ∈ [0..i− 1]. Let E be the expression Ei−Ej as in line 8. By Lemma 27,
E is of the form

∑i−1
k=0 ak · 2xk where

1. each ak is an integer whose absolute value is bounded by 2n+1 · e(σ) · d(σ),
2. if ak ̸= 0, then JσK (xk) ≥ 0.

The second property above implies that E can be written as
∑m

k=0 aℓk · 2
xℓk . From the

definition of Ei and Ej , we also have JσK (E) = d(σ) · (JσK (xi)− JσK (xj)).

The algorithm now enters the inner for loop of line 9, iterating k from m down to 1. This
loop progressively rewrites the expression E. Let E(t) denote for the value of E after the tth
iteration of the loop. During the tth iteration, the value of the variable k is m − t + 1. The
following two claims (proved later) define the behavior of this loop:

Claim 18. If the tth iteration of the loop of line 9 completes without executing the break
statement of line 15, then E(t) is of the form cℓm−t · 2

xℓm−t +
∑m−t−1

k=0 aℓk · 2
xℓk , where cℓm−t

is an integer satisfying
∣∣cℓm−t

∣∣ < 2tC+n+2 · e(σ) · d(σ). Moreover, JσK (E(t)) = JσK (E).

Claim 19. If the tth iteration of the loop of line 9 executes the break statement of line 15, then
|JσK (E)| > d(σ) ·C, and JσK (E) and the coefficient of 2xℓm−t+1 in E(t−1) have the same sign.

66

Section 7: Deciding NatILESLP in polynomial time

Using these two claims, we can now verify that M(i, j) is computed correctly. If the break
statement of line 15 is executed during some iteration t of the loop of line 9, then by Claim 19,
we have

∣∣∣ JσK(E)
d(σ)

∣∣∣ > C, and JσK(E)
d(σ) has the same sign as that of the coefficient of 2xℓm−t+1 in

E(t−1). This coefficient is the integer a referenced in line 12, and since the break statement
was executed, a ̸= 0. Accordingly, lines 13 and 14 set the value of M(i, j) to ±∞, following
the sign of a. Hence, M(i, j) = TC(

JσK(E)
d(σ)) = TC(JσK (xi)− JσK (xj)), as required.

Suppose now that the break statement of line 15 is never executed: the loop of line 9 ter-
minates after m iterations, and the expression E(m) is defined. By Claim 18, this expression
is of the form cℓ0 · 2xℓ0 , for some integer cℓ0 (the bound on cℓ0 given in Claim 18 will be
later used in the runtime analysis in Lemma 1). Since ℓ0 = 0 and JσK (x0) = 0, we have
JσK (E(m)) = cℓ0 . Recall that JσK (Em) = JσK (E) = d(σ) ·(JσK (xi)−JσK (xj)), so M(i, j) must
be set to TC(

cℓ0
d(σ)). This is exactly what the algorithm does in lines 16–18.

To complete the induction step, it is now sufficient to prove Claims 18 and 19.

Proof of Claim 18. For simplicity, letB := 2n+1·e(σ)·d(σ). Note thatB ∈ [2..23·(bit size of σ)+1];
in particular, B < 2C . The proof is by induction on t.

base case: t = 0. Before the first iteration of the loop, we have E(0) = E. Recall that E is
an expression of the form

∑i−1
k=0 ak · 2xk where each ak is an integer whose absolute value

is bounded by B. Thus, |a0| < 2 ·B, as required.
induction hypothesis. If the (t − 1)th iteration of the loop of line 9 completes without

executing the break statement of line 15, then the expression E(t−1) is of the form
cℓm−t+1 · 2

xℓm−t+1 +
∑m−t

k=0 aℓk · 2
xℓk , where cℓm−t+1 ∈ Z satisfies

∣∣cℓm−t+1

∣∣ < 2(t−1)C+1 ·B.
Moreover, JσK (E(t−1)) = JσK (E).

induction step: t ≥ 1. Suppose that the tth iteration of the loop of line 9 completes without
executing the break statement of line 15. Then, the same must hold for the (t − 1)th
iteration, and so the induction hypothesis applies. Since the break statement is not
executed, there are two options:
1. The condition of the if statement in line 10 is true, i.e., M(ℓm−t+1, ℓm−t) ≤ C, or
2. M(ℓm−t+1, ℓm−t) = +∞ and the coefficient cℓm−t+1 of 2xℓm−t+1 in E(t−1) is zero.

In the second case, no update is needed: E(t−1) is already of the form
∑m−t

k=0 aℓk · 2
xℓk ,

and we have E(t) = E(t−1). In the first case, E(t) is constructed from E(t−1) by replacing
2xℓm−t+1 by 2M(ℓm−t+1,ℓm−t) · 2xℓm−t ; see line 10. This removes 2xℓm−t+1 , and modifies the
coefficient of 2xℓm−t from aℓm−t to cℓm−t

:= (aℓm−t + cℓm−t+1 ·2M(ℓm−t+1,ℓm−t)). The coeffi-
cients of the terms 2xℓk with k ∈ [0..m− t− 1] are unchanged. As M(ℓm−t+1, ℓm−t) ≥ 0,
we have cℓm−t ∈ Z. Finally, we bound the absolute value of cℓm−t as follows:∣∣cℓm−t

∣∣ = ∣∣aℓm−t

∣∣+ ∣∣cℓm−t+1

∣∣ · 2M(ℓm−t+1,ℓm−t)

≤ B +
∣∣cℓm−t+1

∣∣ · 2C Hbounds on aℓm−t and M(ℓm−t+1, ℓm−t)I

≤ B + (2(t−1)C+1 ·B − 1) · 2C Hby induction hypothesisI

< 2C + (2(t−1)C+1 ·B − 1) · 2C Hfrom B < 2CI

< 2tC+1 ·B.

Proof of Claim 19. If the tth iteration of the loop of line 9 executes the break statement
of line 15, then the first t − 1 iterations completed without executing the break statement.

67

Section 7: Deciding NatILESLP in polynomial time

By Claim 18, E(t−1) is of the form cℓm−t+1 · 2
xℓm−t+1 +

∑m−t
k=0 aℓk · 2

xℓk , and JσK (E(t−1)) =
JσK (E). Since the tth iteration executes the break statement, we have:

1. M(ℓm−t+1, ℓm−t) = +∞ (from the condition of the if statements of line 10),
2. cℓm−t+1 ̸= 0 (from the condition of the if statement of line 15).

We show that
2JσK(xℓm−t+1

) >
∣∣∣∑m−t

k=0
aℓk · 2

JσK(xℓk)
∣∣∣+ d(σ) · C. (27)

From the definition of E(t−1), and the fact that JσK (E(t−1)) = JσK (E) and cℓm−t+1 ̸= 0, this
inequality implies Claim 19.

To prove Equation (27), we first note that M(ℓm−t+1, ℓm−t) = +∞ implies, from the induction
hypothesis in the main proof, that JσK (xℓm−t+1) > JσK (xℓm−t) + C. Also, by definition of
the indices ℓ0, . . . , ℓm, JσK (xℓm−t) ≥ JσK (xℓk) ≥ 0 for every k ∈ [0..m − t − 1]. Hence,

2JσK(xℓm−t+1
) > 2C · 2JσK(xℓm−t

) and
(∑m−t

k=0 |aℓk |
)
· 2JσK(xℓm−t

) ≥
∣∣∣∑m−t

k=0 aℓk · 2
JσK(xℓk)

∣∣∣, which

in turn implies that Equation (27) holds as soon as we prove 2C ≥
(∑m−t

k=0 |aℓk |
)
+ d(σ) · C.

To show this inequality, we establish that 2C/2 ≥
∑m−t

k=0 |aℓk | and C ≥ 4 · log2(d(σ)) + 8; the
inequality then follows from Lemma 10. We have

2 ·
⌈
log2(max(1,

∑m−t
k=0 |aℓk |))

⌉
+ 4 ⌈log2(d(σ))⌉+ 8

≤ 2 ·
⌈
log2(n · 2n+1 · e(σ) · d(σ))

⌉
+ 4 ⌈log2(d(σ))⌉+ 8 Hbound on each aℓkI

≤ 2 · (n+ 1 + ⌈log2(n)⌉+ ⌈log2(e(σ))⌉+ ⌈log2(d(σ))⌉) + 4 · ⌈log2(d(σ))⌉+ 8

≤ 8 · (bit size of σ) + 8 = C. Heach underlined quantity is ≤ (bit size of σ)I

Therefore, both 2C/2 ≥
∑m−t

k=0 |aℓk | and C ≥ 4 · log2(d(σ)) + 8 hold.

This completes the proof of Lemma 28.

Lemma 1. NatILESLP can be decided in polynomial time.

Proof. Let σ = (x0 ← ρ0, . . . , xn ← ρn) be the input ILESLP of Algorithm 7.
Correctness: By line 20, the algorithm returns true if and only if M(n, 0) ≥ 0. Recall that

JσK (x0) = 0. It then follows from Lemma 28 that M(n, 0) = TC(JσK (xn)). Since C > 0,
TC(JσK (xn)) ≥ 0 if and only if JσK (xn) ≥ 0. Therefore, M(n, 0) ≥ 0 if and only if JσK (xn) ≥ 0;
showing the correctness of the algorithm.

Complexity: To prove that Algorithm 7 runs in polynomial time, observe that:

• The bit length of C is bounded logarithmically in the bit size of σ.

• The expressions E0, . . . , En are computed in polynomial time following Lemma 27.

• The map M requires only O(n2 log2C) space.

• All for loops (lines 4, 7 and 9) iterate on intervals of size linear in the bit size of σ.

Following these observations, the only remaining crucial point is showing that repeated executions
of line 10, locally to one iteration of the for loop of line 7, do not cause the integers in the expres-
sion E to grow superpolynomially. This property is already established in Claim 18 of the proof
of Lemma 28. In particular, the absolute value of each integer in E is bounded by 2nC+n+2·e(σ)·d(σ);
the bit length of this number is polynomial in the bit size of σ. With this key observation, it follows
that all remaining operations performed by the algorithm run in polynomial time.

68

Section 8: Deciding DivILESLP in Pfactoring

Algorithm 8 A FPfactoring algorithm for computing JσK• mod g.

Input: ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn), and g ∈ N≥1 encoded in binary.
1: M ← empty map from [0..n]2 to N
2: for k form 0 to n do M(0, k)← 0

3: for i from 1 to n do
4: let a0, . . . , ai−1 ∈ Z such that JσK (xi) =

∑i−1
j=0 aj ·2

JσK(xj)

d(σ)

5: for k from 0 to (n− i) do
6: h← νkσ(g) · d(σ) ▷ requires factorization oracle
7: let m, q ∈ N such that q = odd(h) and h = 2m · q
8: for j from 0 to i− 1 do
9: b← if JσK (xj) ≥ m then 0 else 2JσK(xj) ▷ uses the algorithm for NatILESLP

10: c← 2M(j,k+1) mod q
11: let rj be the (only) value in [0..h−1] such that 2m divides rj− b, and q divides rj− c
12: M(i, k)← (1

d(σ)

∑i−1
j=0 aj · rj) mod νkσ(g)

13: return M(n, 0)

8 Deciding DivILESLP in Pfactoring

DivILESLP

Input: An ILESLP σ, and g ∈ N≥1 encoded in binary.
Question: Is JσK• divisible by g ?

We describe a procedure that, given an ILESLP σ = (x0 ← ρ0, . . . , xn ← ρn) and g ∈ N≥1 encoded
in binary, outputs (the binary encoding of) the remainder of JσK• modulo g. The decision problem
DivILESLP is solved by checking if the remainder in output is 0. The pseudocode of this procedure
is shown in Algorithm 8.

We denote by νσ : N≥1 → N≥1 the function νσ(x) := ϕ(odd(x · d(σ))), where odd(a) denotes
the largest odd factor of a ∈ N≥1, and ϕ denotes Euler’s totient function (see Equation (23) on
page 59 for the formal definition). We denote by νkσ the kth iterate of νσ, that is, ν0σ(x) := x and
νk+1
σ (x) := νσ(ν

k
σ(x)) for every k ∈ N.

Algorithm 8 constructs a map M with the following property: for every i, k ∈ [0..n] with
i + k ≤ n, the entry M(i, k) stores the value of JσK (xi) mod νkσ(g). Once the map is opportunely
populated, it returns the value M(n, 0) corresponding to JσK• mod g (line 13).

The core of the algorithm is the for loop of line 3. During its ith iteration, this loop populates
the entries M(i, 0), . . . ,M(i, n − i). (The base case of i = 0 is handled in line 2, as JσK (x0) = 0.)
Similarly to Algorithm 7 and following Lemma 27, in line 4 the algorithm “flattens” the expression
associated to xi into one of the form 1

d(σ)

∑i−1
j=0 aj ·2xj , with a1, . . . , ai−1 integers. Let h := νkσ(g)·d(σ).

To compute M(i, k) (during the (k+1)th iteration of the loop of line 5) we reason modulo νkσ(g):

M(i, k) = 1
d(σ) ·

∑i−1
j=0 aj · 2JσK(xj)

= 1
d(σ) ·

∑i−1
j=0 aj · (2JσK(xj) mod h),

where the last number is an integer, because the sum
∑i−1

j=0 aj · 2JσK(xj) is divisible by d(σ) (as σ
is an ILESLP). To compute 2JσK(xj) mod h, we appeal to the Chinese Remainder Theorem (CRT).

69

Section 8: Deciding DivILESLP in Pfactoring

ν0σ(g) = g νσ(g) ν2σ(g) ν3σ(g) ν4σ(g)


0 0 0 0 0 x0
JσKx1 mod g JσKx1 mod νσ(g) JσKx1 mod ν2σ(g) JσKx1 mod ν3σ(g) × x1
JσKx2 mod g JσKx2 mod νσ(g) JσKx2 mod ν2σ(g) × × x2

− − × × × x3
− × × × × x4

Figure 3: Illustration of how the matrix M looks like after 2 iterations of the loop of line 3 (in the
case of n = 4). To fill the next row, we only need the values in the rows above it. Entries with × are
left empty in the algorithm as they are not needed to perform the computation of JσK (xn) mod g.

Write h = 2m · q with m, q ∈ N and q odd. Compute b := 2JσK(xj) mod 2m and c := 2JσK(xj) mod q,
and then use CRT to find the only r ∈ [0..h−1] such that r ≡ b mod 2m, and r ≡ c mod q (line 11).

The value b is computed via Algorithm 7 (line 9). To compute c, we see that 2ϕ(q) mod q = 1,
by Euler’s theorem. Therefore, 2JσK(xj) and 2JσK(xj) mod ϕ(q) have the same reminder modulo q. We
have ϕ(q) = νk+1

σ (g) by definition, and so M(j, k + 1) = JσK (xj) mod ϕ(q). Note that j < i, and
so M(j, k + 1) has been populated in a previous iteration of the loop of line 3; the algorithm thus
constructs c by computing 2M(j,k+1) mod q (line 10).

Regarding the complexity of Algorithm 8, most of its operations can be implemented in polyno-
mial time. The map M requires polynomial space, since νkσ(g) is bounded by d(σ)k · g. Moreover,
while 2M(j,k+1) can in principle be of exponential bit size, computing it modulo q can be done in
polynomial time in the bit size of M(j, k + 1) and q by relying on the exponentiation-by-squaring
method [BW08, Ch. 1.4]. The only difficulty stems from the computation of νkσ(g). For this we use
the integer factorization oracle in order to compute Euler’s totient function, following Equation (23).

We now formalize the above arguments into a full proof of correctness and runtime analysis.

Lemma 2. DivILESLP is in Pfactoring.

Proof. Consider as input an ILESLP σ = (x0 ← ρ0, . . . , xn ← ρn) and g ∈ N≥1. We show that Al-
gorithm 8 computes JσK• mod g, and runs in polynomial time with a factoring oracle. For simplicity
of the exposition, let us see the map M as an (n + 1) × (n + 1) matrix over N, with indices for
rows and columns in [0..n]. The matrix is initially empty, and the algorithm only populates it in a
“triangular way”, only filling the entries (i, k) such that i+k ≤ n. Upon completion of the algorithm,
we will have M(i, k) = (JσKxi mod νkσ(g)), for every such entry (i, k). Figure 3 depicts this matrix.

Since ϕ(a) ≤ a for all a ∈ N≥1, we have νkσ(g) ≤ d(σ)kg. As a result, the number of bits required
to store M is in O(n2 log2(d(σ)

ng)). We prove by induction on i ∈ N that, during the i-th iteration
of the for loop of line 3, the algorithm correctly fills the matrix representing M up to the i-th row,
and does so in polynomial time, assuming access to a factoring oracle.

base case: i = 0. (i.e., before the loop of line 3 starts), the 0-th row of the matrix is already
populated with all 0s (line 2).

induction hypothesis. The first (i− 1)th rows of the matrix M are correctly populated. That is,
for each j ∈ [0..i− 1] and k ∈ [0..n− j], we have M(j, k) = JσKxk mod νjσ(g).

induction step: i ≥ 1. The ith iteration of the loop handles the variable xi. Line 4 computes
integers a0, . . . , ai−1 such that JσK (xi) = 1

d(σ)

∑i−1
j=0 aj2

JσK(xj). Following Lemma 27, this
computation can be performed in polynomial time. Next, for each k ∈ [0..n − i], the inner

70

Section 8: Deciding DivILESLP in Pfactoring

for loop of line 5 computes JσK (xi) mod νkσ(g), storing the in M(i, k) (see line 12). In order
to compute JσK (xi) mod νkσ(g), the algorithm uses the identity

JσK (xi) mod νkσ(g) =

(
1

d(σ)
·
∑i−1

j=0
aj ·

(
2JσK(xj) mod νkσ(g) · d(σ)

))
mod νkσ(g). (28)

We discuss the (k + 1)th iteration of the inner for loop of line 5, analyzing it line by line.

line 6. The algorithm computes νkσ(g). The integer factorization oracle is used to factorize
the arguments of Euler’s totient function, to then compute the result of this function via
Equation (23). Since νkσ(g) is bounded by d(σ)kg, the computation is polynomial time
except the oracle calls. The value h = νkσ(g) · d(σ) is then computed in polynomial time.

line 7. The algorithm factorizes h as h = 2m · q, where q ∈ N is the largest odd divisor of
h. This is done by repeatedly dividing h by 2 until it becomes odd to compute q; which
takes polynomial time. Note that 2m and q are coprime.
The values m and q will be used to compute the value rj := 2JσK(xj) mod h, follow-
ing Equation (28), in the (j + 1)th iteration of the inner for loop of line 8. To do this,
we first compute b := 2JσK(xj) mod 2m and c := 2JσK(xj) mod q. Then, by the CRT, we
compute the unique rj ∈ [0..h− 1] such that rj ≡ b mod 2m and rj ≡ c mod q.

We analyse lines 9–11 locally to the (j+1)th iteration of the for loop of line 9 (j ∈ [0..i− 1]).

line 9. This line computes b = 2JσK(xj) mod 2m. If JσK (xj) ≥ m then clearly b = 0, and
otherwise b = 2JσK(xj). The comparison JσK (xj) ≥ m can be performed in polynomial
time using Algorithm 7. Moreover, when we set b = 2JσK(xj), its value is less than 2m, so
its bit size remains polynomial in the input size.

line 10. This line computes c = 2JσK(xj) mod q. First, recall that Euler’s theorem states that
if two numbers a and q are coprime, then aϕ(q) is congruent to 1 modulo q. Since q is odd,
we thus have c = 2JσK(xj) mod ϕ(q) mod q. From the induction hypothesis, we have already
set M(j, k+1) to JσK (xj) mod ϕ(q) in previous iterations of the loop of line 3. Therefore,
to compute c it only remains to compute 2M(j,k+1) mod q in polynomial time; which can
be done by relying on the exponentiation-by-squaring method [BW08, Ch. 1.4].

line 11. Given b and c, the algorithm replies on (a constructive version of) the CRT to
compute rj in polynomial time. More precisely, for this computation one can use the
extended Euclidean algorithm to compute two integers ℓ1 and ℓ2 such that ℓ1·2m+ℓ2·q = 1
(ℓ1 and ℓ2 exist by Bézout’s identity). Then, rj := (b · ℓ2 · q + c · ℓ1 · 2m) mod h.

When the for loop of line 8 ends, the algorithm has computed rj for every j ∈ [0..i− 1]. Line 12
executes, populating M(i, k) in polynomial time following the formula in Equation (28).

From the analysis above, we conclude that the algorithm is correct. Regarding the running time,
note that each loop in the procedure iterates only over natural numbers bounded by n (which is
bounded by the bit size of σ). Furthermore, all other operations performed by the algorithm run in
polynomial time, except for line 6, which relies on the integer factorization oracle to compute νkσ(g).
So, Algorithm 8 runs in polynomial time with a factoring oracle, and DivILESLP is in Pfactoring.

We can avoid appealing to the factorization oracle by providing Algorithm 8 with the set

P(σ, g) := {p prime : p divides either d(σ) or νkσ(g), for some k ∈ [0..n− 2]}. (29)

71

Section 9: Computing an ILESLP representing x mod 2y

Algorithm 9 An FPfactoring algorithm for computing x mod 2y.
Input: ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn), and two variables x and y in σ.
1: if JσK (y) ≤ 0 then return the ILESLP (x0 ← 0)

2: let a0, . . . , an−1 ∈ Z such that JσK (x) =
∑n−1

j=0 aj ·2
JσK(xj)

d(σ)

3: I ← {j ∈ [0..n− 1] : JσK (xj) < JσK (y)} ▷ each comparison resolved with Algorithm 7
4: let S =

∑
j∈I aj · 2xj and L =

∑
j∈[0..n−1]\I aj · 2xj

5: A←
∑

j∈I |aj |
6: Perform binary search to find q ∈ [−A..A] satisfying 0 ≤ JσK (S)− q · 2JσK(y) < 2JσK(y)

▷ each iteration of binary search uses Algorithm 7
7: let r be the residue of JσK (L) · 2−JσK(y) + q modulo d(σ) ▷ uses Algorithm 8
8: return an ILESLP ξ such that JξK• =

1
d(σ) ·

(
JσK (S) + (r − q) · 2JσK(y))

Observe that this set only contains polynomially many primes of polynomial bit size with respect
to the sizes of σ and g, since νkσ(g) ≤ d(σ)k · g.

Lemma 29. Algorithm 8 runs in polynomial time, when provided with the set P(σ, g) (or any
superset of this set) as an additional input.

Proof. Following the proof of Lemma 2, the only line that requires the factoring oracle is line 6. In
particular, this line asks to compute νkσ(g), for a value of k that ranges in [0..n− 1]. By induction
on k ∈ [0..n−1], we show that knowing P(σ, g) suffices to compute this number in polynomial time.

base case: k = 0. Since ν0σ(g) = g, and g is part of the input, this case is trivial.

induction hypothesis. For k ≥ 1, the positive integer νk−1σ (g) can be computed in polynomial
time in the sizes of σ and g, by relying on P(σ, g).

induction step: k ≥ 1. By induction hypothesis, we can compute νk−1σ (g) in polynomial time.
Observe that k−1 ≤ n−2, and therefore all prime divisors of νk−1σ (g) occur in P(σ, g). Recall
that this set has size polynomial in the sizes of σ and g. We iterate through P(σ, g) in order
to find all prime divisors of νk−1σ (g), as well as those of d(σ). With this set of primes at hand,
we can efficiently compute the prime factorization of odd(νk−1σ (g) · d(σ)). Finally, we compute
νkσ(g) = ϕ(odd(νk−1σ (g) · d(σ))) using Equation (23).

9 Computing an ILESLP representing x mod 2y

Computation of x mod 2y

Input: An ILESLP σ and two of its variables x and y.
Output: An ILESLP ξ such that JξK• = JσK (x) mod 2JσK(y) .

Algorithm 9 describes a procedure for solving the above problem. It builds on Algorithms 7 and 8,
inheriting a polynomial running time given either a factoring oracle or access to the set P(σ, νσ(1)).

Lemma 30. Given an ILESLP σ and two of its variables x and y, Algorithm 9 returns an ILESLP ξ
such that JξK• = JσK (x) mod 2JσK(y). The algorithm runs in polynomial time with a factoring oracle.

72

Section 9: Computing an ILESLP representing x mod 2y

Proof. We analyze the runtime and correctness of the algorithm line by line, providing the underlying
intuition throughout. Below, let σ := (x0 ← ρ0, . . . , xn ← ρn). Recall that d(σ) is a positive integer.

line 1. Over the reals, given a,m ∈ R with m ̸= 0, (a mod m) is defined as a − m ·
⌊
a
m

⌋
. In

particular, (a mod 2ℓ) = 0 whenever ℓ ≤ 0. Accordingly, line 1 checks whether JσK (y) ≤ 0,
and in that case the algorithm returns an ILESLP that encodes the number 0. This line can
be implemented in polynomial time by appealing to Algorithm 7. Below, assume JσK (y) ≥ 1.

line 2. As done in Algorithms 7 and 8, this line computes in polynomial time (Lemma 27) an
expression E :=

∑n−1
j=0 aj · 2xj , where a0, . . . , an−1 ∈ Z, and JσK (x) = E

d(σ) .

lines 3 and 4. The algorithm sorts the monomial a · 2z in the expression E depending on the
comparison JσK (z) < JσK (y). This is done by computing the set I ⊆ [0..n − 1] of indices j
of variables xj such that JσK (xj) < JσK (y). Then, E can be rearranged as L + S, where
S :=

∑
j∈I aj · 2xj contains the exponentials 2z that are “small” comparatively to 2JσK(y), and

L :=
∑

j∈[0..n−1]\I aj · 2xj contains those that are “large”. In particular, 2JσK(y) divides JσK (L).
The set I can be constructed in polynomial time, by appealing n times to Algorithm 7.

line 5. This line computes (in polynomial time) A :=
∑

j∈I |aj |. Observe that:

|JσK (S)| =
∑

j∈I
|aj | · 2JσK(xj) ≤ A · 2JσK(y). (30)

line 6. This line computes the quotient q of the division of JσK (S) by 2JσK(y); formally, the only
integer satisfying 0 ≤ JσK (S)−q·2JσK(y) < 2JσK(y). By Equation (30), we know that q ∈ [−A..A].
Since A has bit size polynomial in the size of σ, we can compute q in polynomial time by
performing binary search on the interval [−A..A], appealing to Algorithm 7. For the sake of
completeness, let us briefly explain how the search is implemented. Suppose knowing that the
required q belongs to [ℓ..u], where l, u ∈ Z. Initially, [ℓ..u] = [−A..A]. Let v :=

⌈
ℓ+u
2

⌉
. Then,

• If JσK (S)− v · 2JσK(y) < 0, then we can restrict the search to [ℓ..v].

• If JσK (S)− v · 2JσK(y) > 2JσK(y), then we can restrict the search to[v..u].

• If none of the previous two cases hold, then v is the required q.

The conditions in the first two cases above are checked in polynomial time using Algorithm 7.
Specifically, by following the operations in the expression S − v · 2y, it is simple to extend
the ILESLP σ into a new ILESLP σ′ such that Jσ′K• = JσK (S) − v · 2JσK(y). One can then
apply Algorithm 7 to σ′ to check the first of the two cases (the second case is handled similarly).

From the definition of the expression E, we have:

JσK (x) =
JσK (E)

d(σ)
=

JσK (L) + JσK (S)
d(σ)

=
(JσK (L) + q · 2JσK(y)) + (JσK (S)− q · 2JσK(y))

d(σ)
. (31)

line 7. This line computes the residue r of JσK (L) · 2−JσK(y) + q modulo d(σ). This is done by con-
structing, in polynomial time, an ILESLP σ′ encoding JσK (L)·2−JσK(y)+q, and then calling Al-
gorithm 8 on σ′ and d(σ). Thus, this line can be implemented in polynomial time with access
to the factoring oracle —this is the only line of the algorithm requiring the oracle. To construct
σ′, recall that the expression L =

∑
j∈[0..n−1]\I aj · 2xj is such that JσK (xj) ≥ JσK (y) for every

j ∈ [0..n− 1] \ I. By following the operations in the expression L′ :=
∑

j∈[0..n−1]\I aj · 2xj−y,

73

Section 9: Computing an ILESLP representing x mod 2y

we can extend σ into an ILESLP σ′′ such that Jσ′′K• = JσK (L′) = JσK (L) · 2−JσK(y). Finally,
σ′′ can be further extended to produce the desired σ′.

Following Equation (31), we see that:

JσK (x) =
(JσK (L) + q · 2JσK(y)) + (JσK (S)− q · 2JσK(y))

d(σ)

=
(JσK (L) + q · 2JσK(y) − r · 2JσK(y)) + (JσK (S)− q · 2JσK(y) + r · 2JσK(y))

d(σ)

=
JσK (L) + q · 2JσK(y) − r · 2JσK(y)

d(σ)
+

JσK (S)− q · 2JσK(y) + r · 2JσK(y)

d(σ)

=
JσK (L′) + q − r

d(σ)
· 2JσK(y) +

JσK (S) + (r − q) · 2JσK(y)

d(σ)
. (32)

By definition of r, JσK(L′)+q−r
d(σ) is an integer. Then, since JσK (x) and JσK (y) are both integers,

and the latter is positive, Equation (32) shows that ℓ := JσK(S)+(r−q)·2JσK(y)

d(σ) is an integer.

line 8. From Equation (32), we conclude that JσK (x) mod 2JσK(y) = ℓ mod 2JσK(y). We will now
show that ℓ ∈ [0..2JσK(y) − 1], which implies that ℓ is in fact JσK (x) mod 2JσK(y). Accordingly,
line 8 of the algorithm constructs (and returns) an ILESLP ξ encoding ℓ. Clearly, ξ can be
constructed in polynomial time by extending σ, following the operations in the expression
1

d(σ) ·
(
S+(r− q) · 2y

)
. Recall that (JσK (S)− q · 2JσK(y)) ∈ [0..2JσK(y)− 1] and r ∈ [0..d(σ)− 1],

by definition of q and r, respectively. Then, 0 ≤ JσK (S)−q ·2JσK(y) ≤ JσK (S)+(r−q) ·2JσK(y),
and JσK (S) + (r − q) · 2JσK(y) < 2JσK(y) + r · 2JσK(y) ≤ d(σ) · 2JσK(y). Therefore, by definition
of ℓ, we conclude that ℓ ∈ [0..2JσK(y) − 1].

Lastly, we show that JσK (x) mod 2JσK(y) is computable in polynomial time given P(σ, νσ(1)).

Lemma 31. Algorithm 9 runs in polynomial time when provided P(σ, νσ(1)) as an additional input.

Proof. As explained during the proof of Lemma 30, only line 7 requires the factoring oracle. This line
requires computing the residue of JσK (L) ·2−JσK(y)+ q modulo d(σ), where L :=

∑
j∈[0..n−1]\I aj ·2xj

defined in line 4 is such that JσK (xj) ≥ Jσ(y)K for every j ∈ [0..n− 1] \ I. Therefore,

JσK (L) · 2−JσK(y) + q =
∑

j∈[0..n−1]\I
aj · 2JσK(xj)−JσK(y) + q.

Since all aj and q have a bit size polynomial in the size of σ, it suffices to show how to compute
2JσK(xj)−JσK(y) mod d(σ) in polynomial time. The arguments are similar as those in Section 8.

Let m ∈ N be such that d(σ) = 2m · odd(d(σ)). By the CRT, 2JσK(xj)−JσK(y) mod d(σ) can be
computed in polynomial time given the following two values:

b := 2JσK(xj)−JσK(y) mod 2m and c := 2JσK(xj)−JσK(y) mod odd(d(σ)),

The value b can be computed in polynomial time by appealing to Algorithm 7. This is done as for
the identically named value “b” in line 9 of Algorithm 8; see the proof of Lemma 2.

By definition, the set P(σ, νσ(1)) contains all prime factors of d(σ). Therefore, we can compute
t := νσ(1) = ϕ(odd(d(σ))) in polynomial time using Equation (23). For obtaining the value c, we
then first derive the residue r := (JσK (xj) mod t) and the residue s := (JσK (y) mod t) in polynomial
time using Algorithm 8. Afterwards, c =

(
2(r−s) mod t mod odd(d(σ))

)
is computed in polynomial

time using the exponentiation-by-squaring method.

74

Part I: On the complexity of ILEP

Part III

On the complexity of ILEP
We combine the results of the two previous parts of the paper to show Corollary 1, i.e., that the
optimization problem for integer linear-exponential programs is in NPO-cmp. The first section of
this part of the paper introduces the class NPO-cmp. The second section proves the corollary.

10 The complexity class NPO-cmp

We briefly recall the notion of an optimization problem. An optimization problem P is characterized
by a quintuple (I, U, sol,m, goal) where:

• I is the set of instances of P,

• U is a set (or, universe) containing all possible solutions,

• sol : I → 2U assigns each input instance x ∈ I to the set of its solutions sol(x),

• m : I×U ⇀ Z is the measure function, a partial function defined for every x ∈ I and y ∈ sol(x),

• goal ∈ {min,max} specifies a minimization or a maximization objective.

For x ∈ I, the set of optimal solutions of x is defined as

opt(x) := {y ∈ sol(x) : m(x, y) = goal{m(x, z) : z ∈ sol(x)}}.

The computational task associated to P is the following:

Input: An instance x ∈ I.
Output: An element y ∈ opt(x) if opt(x) ̸= ∅, otherwise reject.

Below, we assume the elements of the sets I and U to be endowed with a notion of size |·|. We
define NPO-cmp as the class of all optimization problems P = (I, U, sol,m, goal) such that:

1. The sets I and U are recognizable in polynomial time.

2. Given in input x ∈ I and y ∈ U , checking y ∈ sol(x) is in P.

3. m is computable, and checking m(x, y1) ≤ m(x, y2), given x ∈ I and y1, y2 ∈ sol(x), is in P.

4. There is a polynomial q : N→ N such that, for all x ∈ I, short(x) := {y ∈ sol(x) : |y| ≤ q(|x|)}
satisfies: (a) if sol(x) ̸= ∅ then short(x) ̸= ∅, and (b) if opt(x) ̸= ∅ then opt(x)∩ short(x) ̸= ∅.

5. Given an instance x ∈ I, deciding sol(x) ̸= ∅ ∧ opt(x) = ∅ is in NP.

It is worth noting that some authors prefer replacing Properties (4) and (5) above with the simpler

4’. There is a polynomial q : N→ N such that |y| ≤ q(|x|) for every x ∈ I and y ∈ sol(x),

which in particular implies the finiteness of sol(x) (see, e.g., the definition of NPO in [AMC+99]).
The only difference between Properties (4) and (5) and Property (4’) lies in whether only small solu-
tions are considered: if an optimization problem (I, U, sol,m, goal) is in NPO-cmp, then the problem
(I, U, short,m, goal), where short is the function required by Property (4), is also in NPO-cmp and

75

Section 11: ILEP is in NPO-cmp

satisfies Property (4’). In other words, Property (4’) reflects the idea that only polynomial size solu-
tions are reasonable solutions. Our rationale for preferring the more wordy Properties (4) and (5) is
that they provide a nice blueprint for organizing the results in the previous parts of the paper. This
modest goal is indeed the main purpose behind the class NPO-cmp; as stated in the introduction,
we make no presumption on the naturality of this class in a broader context.

Aside from the differences between Properties (4) and (5) and Property (4’), starting from the
definition of NPO-cmp, one obtains the class NPO by replacing Property (3) with the stronger

3’. m is computable in polynomial time, assuming a binary encoding for the integer in output.

Therefore, every problem in NPO belongs to NPO-cmp.
Expanding on the discussion in Section 1.3, we see that, when P belongs to NPO, Properties (3’)

and (4’) ensure that, for any input x ∈ I, one can compute in polynomial time two integers a and b
such that for every (short) solution y ∈ sol(x) we have m(x, y) ∈ [a..b]. (Implicitly, this step assumes
knowing the polynomial q in Property (4’), as well as a polynomial bounding the runtime of m.)
One can then search for the optimal solution by performing binary search: at each iteration, the
interval [a..b] shrinks in half following the answer to the query ∃y ∈ U : y ∈ sol(x)∧m(x, y) ≥ b−a

2 .
By Properties (2), (3’) and (4’), this query is solvable in NP. Using this approach, it follows
that NPO problems can be solved by polynomial-time Turing machines with access to an NP
oracle, that is, NPO ⊆ FPNP. (In fact, NPO = FPNP for a suitable model of computation
characterizing NPO, see [Kre88,CP89].)

In the case of NPO-cmp, Property (4b) ensures that {m(x, y) : y ∈ short(x)} is a set of expo-
nentially many integers containing the optimal value for m (if one exists). However, NPO-cmp
does not fix any representation on the integers returned by m (we only know that one such rep-
resentation exists, since m is computable). Therefore, the size of these integers is unknown, and
there is no guarantee that binary search can be performed on this set. Instead of an inclusion
within FPNP, we have NPO-cmp ⊆ FNPNP. Indeed: a polynomial-time non-deterministic Turing
machine with access to an NP oracle can solve an NPO-cmp problem in the following simple way:
1: Check that the input x belongs to I; if not, reject ▷ In P by Property (1).
2: Query the NP oracle to determine if sol(x) ̸= ∅ ∧ opt(x) = ∅ holds; if the answer is yes, reject

▷ This query can be solved in NP by Property (5).
3: Guess a string y of length q(|x|), where q is the polynomial in Property (4)
4: Check y ∈ U and y ∈ sol(x); if not, reject ▷ In P by Properties (1) and (2).
5: Query the NP oracle to determine if there exists z ∈ short(x) such that m(x, z) > m(x, y)

(assuming goal = max); if the answer is yes, reject
▷ This query can be solved in NP because |z| ≤ q(|x|), and checking whether z ∈ sol(x) and

m(x, z) > m(x, y) can be done in polynomial time by Properties (2) and (3).
6: return y

11 ILEP is in NPO-cmp

We now prove that the optimization problem for integer linear-exponential programs is in NPO-cmp
(Corollary 1). Let us first define the objects I, U, sol and m, noting that goal is simply min or max:

• I is the set of all pairs (τ, φ) where τ is a linear-exponential term (the objective function)
and φ is an integer linear-exponential program. The size |(τ, φ)| of (τ, φ) ∈ I is the sum of
the sizes of τ and φ.

• U := {(σ,P(σ)) : σ is a ILESLP}, where P(σ) := P(σ, d(σ) · νσ(1)) and

76

Section 11: ILEP is in NPO-cmp

– d(σ) is the product of all denominators occurring in rational constants of scaling expres-
sions in σ (as defined at the beginning of Part II);

– νσ is the function νσ(x) := ϕ(odd(x · d(σ))), as defined in Section 8;

– P(σ, g) is the set of primes defined in Equation (29) on page 71.

The size |(σ,P(σ))| of (σ,P(σ)) ∈ U is the sum of the bit sizes of σ and P(σ).

• Given (τ, φ) ∈ I, we define sol(τ, φ) as the set of all (σ,P(σ)) ∈ U with the following property.
Let σ = (x0 ← ρ0, . . . , xn ← ρn). Then,

(a) the set {x0, . . . , xn} contains (at least) all variables in τ and in φ;

(b) each variable x occurring in φ or τ is such that JσK (x) ≥ 0;

(c) the map assigning to each x in φ the value JσK (xi) is a solution of φ.

• Given (τ, φ) ∈ I and (σ,P(σ)) ∈ sol(τ, φ), we define m((τ, φ), σ) as the integer τ(σ) obtained
by evaluating τ , replacing each variable x occurring in it with JσK (x).

Let us prove that these objects satisfy the five properties of NPO-cmp.

Property (1). The set I is clearly recognizable in polynomial time. We show that the same is
true for the set U —this is the content of Proposition 1 (Section 1.2):

Proposition 1. Given an LESLP σ and P(σ), one can decide in polynomial time if σ is an ILESLP.
In order words, the set U := {(σ,P(σ)) : σ is an ILESLP} is recognizable in polynomial time.

Proof. Consider a pair (σ, S), where S is a set of positive integers, and σ := (x0 ← ρ0, . . . , xn ← ρn)
is a LESLP (both objects are clearly recognizable in polynomial time). We first check that S = P(σ).
Recall that, given g ∈ N≥1, P(σ, g) := {p prime : p divides d(σ) or νkσ(g), for some k ∈ [0..n− 2]};
and P(σ) = P(σ, d(σ) · νσ(1)). Here, νkσ stands for the kth iterate of the function νσ. To check
S = P(σ), we first we use the polynomial time algorithm for primality testing [AKS04] to verify
that all elements of S are primes. Afterwards, we check that these primes are exactly those appearing
in the prime factorization of d(σ) or of numbers of the form νkσ(d(σ) · νσ(1)), with k ∈ [0..n − 2].
For this second step, the arguments are similar to those in the proof of Lemma 29. Below, we give
the pseudocode of a polynomial time procedure preforming this step:
1: assert S contains all prime divisors of d(σ)
2: compute νσ(1) = ϕ(odd(d(σ))) by relying on the prime divisors of d(σ) ▷ see Equation (23)
3: m0 ← d(σ) · νσ(1) ▷ mi = νiσ(d(σ) · νσ(1))
4: for k from 0 to n− 2 do
5: assert S contains all prime divisors of mk

6: if k ̸= n− 2 then
7: compute νσ(mk) = ϕ(odd(mk · d(σ))) by relying on the prime divisors of d(σ) and mk

8: mk+1 ← νσ(mk)

9: assert every prime in S divide
∏k−2
i=0 mi

10: return true
After establishing S = P(σ), we determine whether the LESLP σ is actually an ILESLP. We

recall the snippet of code from Section 1.2 that solves this problem:
1: for i = 1 to n do
2: if ρi is of the form 2x then assert JσK (x) ≥ 0

77

Section 11: ILEP is in NPO-cmp

3: if ρi is of the form m
g · x then assert g

gcd(m,g) divides JσK (x)
4: return true

By Lemma 1, the condition in the assert command of line 2 can be checked in polynomial time. To
show that the same is true for the assert command of line 3, first observe that g

gcd(m,g) is a divisor
of d(σ). Then, the statement follows from Lemma 29, as soon as we show the following claim:

Claim 20. for every a, b ∈ N≥1 such that a is a divisor of b, P(σ, a) ⊆ P(σ, b).

Proof of Claim 20. It suffices to show that νkσ(a) divides νkσ(b). The proof is by induction on k.

base case: k = 0. Since ν0σ(x) = x, the statements follows trivially.

induction hypothesis. Given k ≥ 1, νk−1σ (a) divides νk−1σ (b).

induction step: k ≥ 1. By definition of odd, odd(a · d(σ)) divides odd(b · d(σ)). Moreover, one of
the basic properties of Euler’s totient function ϕ is that ϕ(g) divides ϕ(c) whenever g divides c
(this follows directly from the definition of φ). Hence, νσ(a) divides νσ(b). By induction
hypothesis, νk−1σ (νσ(a)) divides νk−1σ (νσ(b)); in other words, νkσ(a) divides νkσ(b).

This concludes the proof of Proposition 1.

Property (2). We start with an auxiliary lemma which we will also use to show Property (3).

Lemma 32. There is a polynomial time procedure with the following specification:

Input: (σ,P(σ)) ∈ U and a linear-exponential term τ featuring variables X from σ.
Output: An ILESLP ξ.

Under the assumption that JσK (x) ≥ 0 for all x ∈ X, the algorithm ensures that JξK• is the integer
obtained by evaluating τ by replacing all x ∈ X with JσK (x).

Proof. Let X = {y1, . . . , yℓ}, and τ be the term
∑ℓ

i=1

(
ai · yi+ bi · 2yi +

∑ℓ
j=1 ci,j · (yi mod 2yj)

)
+d.

Here is the pseudocode of the algorithm:
for (i, j) ∈ [1..ℓ]× [1..ℓ] do

let ξi,j be the ILESLP computed by Algorithm 9 on input (σ, yi, yj ,P(σ))
Rename variables in ξi,j to be distinct from those in σ;
let zi,j be the variable in the last assignment of ξi,j ▷ the one encoding Jξi,jK•
Extend σ by appending the assignments in ξi,j

return an ILESLP for the expression
∑ℓ

i=1

(
ai · yi + bi · 2yi +

∑ℓ
j=1 ci,j · zi,j

)
+ d

Each call to Algorithm 9 runs in polynomial time (Lemma 31 and Claim 20), and by Lemma 30
it produces an ILESLP ξi,j with Jξi,jK• = (JσK (yi) mod 2JσK(yj)). Upon reaching line 6, the (aug-
mented) ILESLP σ is of polynomial size, and contains not only the initial assignments, but also
all those added by the for loop of line 1 —specifically, assignments to variables zi,j satisfying
JσK (zi,j) = (JσK (yi) mod 2JσK(yj)). The expression in line 6 involves O(ℓ2) additions, exponentia-
tions, and multiplications by integer constants. So, line 6 can be implemented in polynomial time
by appending, to σ, a suitable sequence of assignments corresponding to these operations.

The following proposition (first stated in Section 1.2) implies Property (2).

Proposition 2. Checking whether (σ,P(σ)) ∈ U encodes a solution to an instance (τ, φ) of ILEP
can be done in polynomial time in the bit sizes of σ and φ.

78

Section 11: ILEP is in NPO-cmp

Proof. Checking condition Item (a) in the definition of sol can clearly be done in polynomial time;
let us write X for the variables occurring in φ or τ . For Item (b), given a variable x ∈ X, we can
decide JσK (x) ≥ 0 in polynomial time by appealing to Algorithm 7 (see Lemma 1). For Item (c), we
need to check whether the map ν assigning to each x ∈ X the value JσK (x) satisfies φ. Let τ ≤ 0
be an inequality in φ (equalities τ = 0 are treated analogously by viewing them as conjunctions
τ ≤ 0 ∧ −τ ≤ 0). By Lemma 32, we can construct, in polynomial time, an ILESLP ξ such that JξK•
is the integer τ(σ) obtained by evaluating τ on ν. Next, we append an assignment y ← −1 · x to ξ,
where x is the variable in the last assignment of ξ (the one encoding JξK•), and y is a fresh variable.
Then, τ(σ) ≤ 0 if and only if JξK• ≥ 0, and we can check whether JξK• ≥ 0 in polynomial time
via Algorithm 7.

Property (3). The map m is clearly computable. Consider an instance (τ, φ) ∈ I and two of its
solutions (σ1,P(σ1)), (σ2,P(σ2)) ∈ sol(τ, φ). An algorithm to decide τ(σ1) ≤ τ(σ2) is the following:
1: Construct a polynomial-size ILESLP ξ such that JξK• = τ(σ2)− τ(σ1)
2: return true if JξK• ≥ 0 else false

The ILESLP ξ in line 1 is computed in polynomial time by relying on the algorithm in Lemma 32.
The check JξK• ≥ 0 is performed in polynomial time by appealing to Algorithm 7.

Property (4). By Theorem 1 (proven in Part I), if an instance (τ, φ) ∈ I has an (optimal) solu-
tion, then it has one representable with a polynomial-size ILESLP σ. We remark that our proof of
this theorem is constructive, meaning that it allows one to explicitly derive a suitable monotonic
polynomial h1, such that, for every (τ, φ) ∈ I, the corresponding ILESLP σ from Theorem 1 has
(when it exists) size bounded by h1(|(τ, φ)|). Moreover, the set of primes P(σ) has size polynomial
in σ (see page 71, and note that the definition of P(σ) is constructive). Let h2 be a monotonic poly-
nomial bounding the size of P(σ) given the size of any ILESLP σ. Setting q(x) := h1(x) + h2(h1(x))
results in the polynomial required by Property (4): given an instance (τ, φ) ∈ I, if an (optimal)
solution exists, then there is (σ,P(σ)) ∈ sol(τ, φ) such that σ has size s bounded by h1(|(τ, φ)|),
and P(σ) has size bounded by h2(s) ≤ h1(h1(|(τ, φ)|)). Then, |(σ,P(σ))| ≤ q(|(τ, φ)|).

Property (5). Informally, this property asks for an NP procedure to check whether the input
instance is unbounded, that is, it has an infinite sequence of solutions in which the value of the
objective function strictly increases (assuming goal = max; the argument we give is analogous for
goal = min). We reason similarly to how this property is proven in ILP. Let q and short be the
polynomial and function from Property (4). From the above discussion, we have an explicit definition
for q, and this polynomial is monotonic. Let (τ, φ) ∈ I. We show that sol(τ, φ) ̸= ∅ ∧ opt(τ, φ) = ∅
holds if and only if the following integer linear-exponential program is feasible:

φ ∧ τ ≥ ∥τ∥1 · 2zs ∧ z1 = 2s ∧
∧s

i=2
zi = 2zi , (33)

where s := q(|(τ, φ)|)+3 and z1, . . . , zs are variables not occurring in φ or τ . The size of this linear-
exponential program is polynomial in |(τ, φ)|, and its feasibility can be decided in NP by Theorem 1
(or, alternatively, the original algorithm from [CMS24]); Property (5) follows. Below, let ξ be
the ILESLP ξ := (z−1 ← 0, z0 ← 2z−1 , z1 ← 2s · z0, z2 ← 2z1 , . . . , zs ← 2zs , zs+1 ← ∥τ∥1 · zs), and
observe that in any solution to Equation (33), the value taken by the term ∥τ∥1 · 2zs is exactly JξK•.

For the left-to-right direction of the double implication, supposes sol(τ, φ) ̸= ∅ ∧ opt(τ, φ) = ∅.
As stated above, this means that there is an infinite sequence of solutions of φ in which the value
of τ strictly increases. Therefore, there is a solution for which the value of τ exceeds JξK•, and this
implies the feasibility of Equation (33).

79

Section 11: ILEP is in NPO-cmp

For the right-to-left direction, we consider the contrapositive. Assume that either sol(τ, φ) = ∅
or opt(τ, φ) ̸= ∅. If sol(τ, φ) = ∅ then φ is infeasible and therefore so is Equation (33). If instead
opt(τ, φ) ̸= ∅, then by Property (4b) we have opt(τ, φ)∩short(τ, φ) ̸= ∅. To show that Equation (33)
is infeasible, it suffices to show that for every (σ,P(σ)) ∈ short(τ, φ), the integer τ(σ) obtained by
evaluating τ on σ is strictly smaller than JξK•. Let x := (x1, . . . , xn) be the variables occurring
in τ . By definition, τ(x) ≤ ∥τ∥1 · 2max(x1,...,xn) for all values given to x among the natural numbers.
Consider then (σ,P(σ)) ∈ short(τ, φ), with σ = (y0 ← ρ0, . . . , ym ← ρm). By definition of short, we
have m ≤ q(|(τ, φ)|). We show that, for every i ∈ [1..m], |JσK (yi)| ≤ JξK (zi). Together with the fact
that JξK (zj−1) < JξK (zj) for every j ∈ [1..s], this implies τ(σ) ≤ ∥τ∥1 · 2JξK• , concluding the proof.

base case: i = 1. The expression ρ1 has one of the following forms: 0, a·y0 (for some a ∈ Q), y0+y0,
or 2y0 . Since JσK (y0) = 0, we have JσK (y1) ∈ {0, 1}. On the other hand, JξK (z1) = 2s > 1.

induction hypothesis. Given i ≥ 2, we have |JσK (yj)| ≤ JξK (zj) for every j ∈ [1..i− 1].

induction step: i ≥ 2. The expression ρi has one of the following forms: 0, a · yj , yj + yk or 2yj ,
where j, k ∈ [1..i− 1]. Let ℓ := max{|JσK (yj)| : j ∈ [1..i− 1]}, and k ∈ [1..i− 1] be such that
|Jσ(yk)K| = ℓ. Then, JσK (yi) ≤ max(|a| · ℓ, 2ℓ). We show that max(|a| · ℓ, 2ℓ) ≤ JξK (zi):

• 2ℓ ≤ JξK (zi): By induction hypothesis, ℓ = |JξK (yk)| ≤ JξK (zk). By definition of ξ,
JξK (zj−1) < JξK (zj) for every j ∈ [1..s], and therefore JξK (zk) ≤ JξK (zi−1). Moreover, by
definition JξK (zi) = 2JξK(zi−1). Therefore, 2ℓ ≤ 2JξK(zk) ≤ 2JξK(zi−1) = JξK (zi).

• |a| ·ℓ ≤ JξK (zi): Since 0 ≤ ℓ ≤ JξK (zi−1) (from the previous point in the proof), it suffices
to show |a|·JξK (zi−1) ≤ 2JξK(zi−1). This inequality is trivial for a = 0. Else, by Lemma 10,
we see that the inequality is true as soon as JξK (zi−1) ≥ 4 · log2(|a|) + 8. Observe that
the bit size of a is bounded by the bit size of σ, and therefore log2(|a|) ≤ q(|(τ, φ)|). By
definition of ξ, we also have JξK (zi−1) ≥ JξK (z1) = 2q(|(τ,φ)|)+3. Then,

4 · log2(|a|) + 8 ≤ 4 · q(|(τ, φ)|) + 8 ≤ 2q(|(τ,φ)|)+3 ≤ JξK (zi−1).

This completes the proof of Corollary 1.

80

Appendix A: The Sequential Squaring Assumption and ILESLPs

Part IV

Appendices

A The Sequential Squaring Assumption and ILESLPs

This appendix contains a detour on the time-lock puzzle introduced in [RSW96], which we use to
establish a lower bound for the problem DivILESLP from Section 1.2 (or, equivalently, the problem
of deciding if an LESLP is an ILESLP) in terms of a well-established cryptographic assumption.

Basic number theory concepts for cryptography. A prime p is said to be safe whenever
p−1
2 is also prime. A number b is a quadratic residue modulo N whenever it is congruent to r2

modulo N , for some r ∈ [0..N − 1]; if b is also in [0..N − 1], then it is a quadratic residue of N .
Given two distinct safe primes p and q, the set of all quadratic residues modulo N := p · q forms
a multiplicative cyclic subgroup of order (p−1)·(q−1)

4 ; the key point being that it is then possible to
generate all quadratic residues of N starting from any of them, but it is impossible to do so in time
polynomial in the bit sizes of p and q. A function f : N→ (0, 1) is said to be negligible if for every
c ∈ N there is an integer Mc such that f(n) < 1

nc for every n > Mc.

The time-lock puzzle. We give a brief description of the time-lock puzzle from [RSW96], refer-
ring the reader to that paper for a full account on the problem and its applications. The objective is
to encrypt a message M in a way that gives not only strong guarantees on the minimum amount of
time any adversary must spend to decrypt it, but also some (mild) guarantees on the maximum time
a strong adversary would take. As usual in the computational model of cryptography, adversaries
are modelled as probabilistic polynomial-time Turing machines, and we moreover assume to know
a reasonably tight upper bound S on the number of squaring per second that these adversaries can
perform, modulo any number. At our disposal, we also have a pair of symmetric-key cryptographic
algorithms (Encrypt,Decrypt); these algorithms are known to the adversary. Besides minor
changes that we will discuss later, [RSW96] proposes the following protocol for encrypting M :
1: p, q ← two distinct safe primes such that p−1

2 and q−1
2 are both congruent to 3 modulo 8

2: T ← S · t ▷ t: number of seconds the puzzle must last. Given in input with M and S
3: generate a secret key K ∈ [0..N − 1] for the pair of algorithms (Encrypt,Decrypt)
4: C ← Encrypt(K,M)
5: E ← 2T mod ϕ(N) ▷ use exponentiation-by-squaring method [BW08, Ch. 1.4]...
6: D ← (K + 2E) mod N ▷ ...twice
7: return (N,D,C, T)

To solve the time-lock puzzle, an adversary must retrieve the message M . Except for trying
to compute K from C —which is infeasible, since secure symmetric-key cryptographic algorithms
exists (the simplest of all being one-time pad)— the only way for the adversary to retrieve M is to
extract K from D, and then run Decrypt(K,C). That can be done by computing y := 22

T
mod N

via repeated squaring, to then subtract it from D (modulo N). The key cryptographic assumption
implying the security of the time-lock puzzle thus focuses on the computation of y:

Conjecture 1 (Sequential Squaring Assumption). There is a polynomial P : N → N such that for
every probabilistic polynomial-time adversary A, there exists a negligible function negl : N→ (0, 1)

81

Appendix A: The Sequential Squaring Assumption and ILESLPs

such that for all λ ∈ N (in unary):∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

(p, q,N) ← GenMod(1λ)

T
$←− P (2λ)

b
$←− {0, 1}

if b = 0 then y := 22
T
mod N

if b = 1 then y
$←− QRN

b′ ← A(1λ, N, T, y)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

In Conjecture 1, λ is a security parameter that governs the bit sizes of the primes p and q, the
“time limit” T of the time-puzzle, and the runtime of the adversary A. The function GenMod is
a probabilistic polynomial-time algorithm that returns a triple (p, q,N) where p and q are distinct
safe primes such that p−1

2 and q−1
2 are congruent to 3 modulo 8 (i.e., those computed in line 1 of the

protocol), and N := p · q. The arrow $←− stands for uniform sampling. In a nutshell, Conjecture 1
states that adversaries can only distinguish between a y computed as (22T mod N) and one randomly
sampled among the quadratic residues of N (denoted QRN above) with negligible probability.

Proposition 5. Conjecture 1 implies that DivILESLP is not in BPP.

Proof. Suppose that DivILESLP is in BPP. A simple adversary A breaking the binary sequential
squaring assumption is defined as follows. Given the input (1λ, N, T, y), A constructs the ILESLP σ:

x0 ← 0, x1 ← 2x0 , x2 ← T · x1, x3 ← 2x2 , x4 ← 2x3 , x5 ← −y · x1, x6 ← x4 + x5,

which evaluates to JσK• = 22
T − y. The adversary then invokes the BPP algorithm for DivILESLP

with inputs σ and N . If the algorithm returns true, A outputs 0; otherwise, it outputs 1.

On the security of the time-lock puzzle. As mentioned above, the protocol (and thus the
cryptographic assumption) considered in [RSW96] differ very slightly from the one reported here.
In particular, the protocol in [RSW96] allows in line 5 to use exponentiation xE instead of 2E , where
x ∈ [2..N − 1] is randomly chosen. Correspondingly, the cryptographic assumption in Conjecture 1
would sample uniformly at random x in [2..N−1] to then define y := x2

T
mod N in the case of b = 0.

The fact that the protocol is believed to be secure then stems from the fact that factoring is not
believed to be in BPP and that, with high probability, the period of the sequence x0, x1, x2, . . . ,
where xi := x2

i
mod N , is large comparatively to N . (Note that we can assume GenMod(1λ)

to return an N in Ω(2λ), hence the period of the sequence is also large comparatively to T .) As
remarked in [RSW96], we can fix x = 2 as long as we guarantee this period to still be large. This
is ensured by the constraints on the primes p and q imposed in line 1 of the protocol (which are
absent in [RSW96]), as we explain below.

Denote by λ : N≥1 → N≥1 the Carmichael function. Given a positive integer n, this function
returns the smallest positive integer m such that am ≡ 1 (mod n) holds for every a coprime with n.

Theorem 2 [BBS86]. Let N := p · q, with p and q distinct safe primes such that p−1
2 and q−1

2 are
congruent to 3 modulo 8. The period of the sequence x0, x1, . . . , where xi = 22

i
mod N , is λ(λ(N)).

Proof. Denote by π the period of the sequence x0, x1, . . . , and by ordM (x) the (multiplicative) order
of x modulo M (assuming x and M coprime). From the definition of the Charmichael function one
can show that λ(N)

2 = p−1
2 ·

q−1
2 . In particular, since both p−1

2 and q−1
2 are odd, ordλ(N)/2(2) is

well-defined. In [BBS86] the following results are established:

82

Appendix A: The Sequential Squaring Assumption and ILESLPs

1. Under the sole assumptions that p and q are distinct primes that are congruent to 3 modulo 4,
and that 2 is a quadratic residue modulo N , we have π | λ(λ(N)). (See [BBS86, Theorem 6].)

2. Under the same assumptions as Item 1, and further assuming ordλ(N)/2(2) = λ(λ(N)) and
ordN (2) =

λ(N)
2 , it holds that λ(λ(N)) | π. (See [BBS86, Theorem 7].)

3. Under the sole assumption that p and q are distinct safe primes that are congruent to 3
modulo 4, and that 2 is a quadratic residue with respect to at most one among p−1

2 and q−1
2 ,

then ordλ(N)/2(2) = λ(λ(N)). (See [BBS86, Theorem 8].)

The theorem then follows as soon as we establish that all the above assumptions are covered by “p
and q are distinct safe primes such that p−1

2 and q−1
2 are congruent to 3 modulo 8”:

Assumption: “p and q are distinct are congruent to 3 modulo 4”. This assumption is equivalent
to asking p−1

2 and q−1
2 to be odd, which they are, since they are congruent to 3 modulo 8.

Assumption: “2 is a quadratic residue modulo N ”. First, remark that 2 is a quadratic residue
modulo p · q if and only if 2 is a quadratic residue modulo p and modulo q. The left-to-right
direction of this double implication is trivial. For the right-to-left direction, suppose r2 ≡ 2
(mod p) and s2 ≡ 2 (mod q). By the Chinese remainder theorem, there is z ∈ [0..p · q − 1]
such that z ≡ r (mod p) and z ≡ s (mod q). Then, z2 − 2 is divisible by both p and q, and
so, by coprimality of p and q, it is also divisible by p · q; i.e., 2 is a quadratic residue of p · q.
Let us then show that 2 is a quadratic residue modulo p (same arguments for q). The second
supplement to the law of quadratic reciprocity (see the entry for “quadratic reciprocity, law
of” in [Nel08]) states that 2 is a quadratic residue modulo p if and only if p ≡ ±1 (mod 8).
Note that if p ≡ 1 (mod 8), then p−1

2 ≡ 0 (mod 4) and therefore p cannot be a safe prime.
The congruence p ≡ −1 (mod 8) is instead equivalent to p−1

2 ≡ 3 (mod 4) (and there are
safe primes satisfying these pairs of constraints, take e.g. p = 7). Since we are assuming
p−1
2 ≡ 3 (mod 8), we also have p−1

2 ≡ 3 (mod 4); as required.

Observe that we have now shown that the assumptions of Item 1 apply.

Assumption: ordN (2) =
λ(N)
2 . Since p and q are safe primes, the set of quadratic residues mod-

ulo N forms a multiplicative cyclic group of order (p−1)·(q−1)
4 = λ(N)

2 ; meaning in particular
that all quadratic residues have the same order (i.e., λ(N)

2). From the previous point, 2 is a
quadratic residue modulo N .

Assumption: “2 is a quadratic residue with respect to at most one among p−1
2 and q−1

2 ”. Again
from the second supplement to the law of quadratic reciprocity, 2 is a quadratic residue modulo
p−1
2 if and only if p−1

2 ≡ ±1 (mod 8). We are however imposing p−1
2 ≡ 3 (mod 8), so 2 is not

a quadratic residue modulo p−1
2 (nor modulo q−1

2).

This is the last assumption we needed to show: it completes the assumptions in Item 3 and,
following the conclusion of that item, also the assumptions in Item 2.

One last point: Conjecture 1 requires GenMod to run in probabilistic polynomial-time, and so
we also need to check that the set of numbers p that are safe primes satisfying p−1

2 ≡ 3 (mod 8) is
not only infinite, but also not too sparse. However, already whether there are infinitely many safe
primes is not known. The usual (well-corroborated) assumption in cryptography is that among the
first n integers, Ω

(
n

log(n)2

)
are safe primes. Following Dirichlet’s theorem, it is natural to expect

such a bound to hold also for the safe primes p satisfying p−1
2 ≡ 3 (mod 8):

83

Appendix B: The algorithm for deciding ILEP: Further information on Steps I and III

Conjecture 2. Among the first n ∈ N≥1 positive integers, Ω
(

n
log(n)2

)
are safe primes numbers p

that satisfy p−1
2 ≡ 3 (mod 8).

The bound in Conjecture 2 is also implied by the well-known Bateman-Horn conjecture. Taken
together, Theorem 2, Conjecture 2, and the assumption that factoring is not in BPP provide a
rationale for believing that Conjecture 1 holds.

Proof that the Bateman-Horn conjecture implies Conjecture 2. Define the maps f1(x) := 8 · x + 3
and f2(x) := 2 · f1(x) + 1. Note that the subset of [1..n] we are interested in is

S(n) := {f2(i) : i ∈ N and both f1(i) and f2(i) are prime} ∩ [1..n].

We first assume Dickson’s conjecture and show that it implies that S(n) is infinite. We will later
appeal to Bateman–Horn conjecture (which implies Dickson’s conjecture) to obtain an estimation
on #S(n). Recall that Dickson’s conjecture states that, for any given finite family f1, . . . , fk of
univariate functions fi(x) := ai · x+ bi, where ai ∈ N≥1 and bi ∈ Z:

1. there are infinitely many n ∈ N such that f1(n), . . . , fk(n) are all primes, or

2. there is a single integer α ≥ 2 dividing, for every m ∈ N, the product
∏k
i=1 fi(m).

We simply have to exclude the second of the two cases above, showing that there are two integers
m1,m2 ∈ N such that f1(m1) · f2(m1) and f1(m2) · f2(m2) are coprime. This holds already for
m1 = 1 and m2 = 2: f1(1) · f2(1) = 11 · 23 and f1(2) · f2(2) = 3 · 13 · 19.

Moving to the density estimation, since the first of the two cases in Dickson’s conjecture applies,
the Bateman–Horn conjecture implies that there is a real number C ∈ R dependent on f1 and f2
(and independent on n) such that #S(n) ≥ C ·

∫ n
2

dt
(log t)2

; i.e., #S(n) is in Ω(n
(logn)2

) (in fact, the
Bateman–Horn conjecture gives Θ(n

(logn)2
), but we only need a lower bound).

B The algorithm for deciding ILEP:
Further information on Steps I and III

In this appendix, we provide a further information on the Steps I and III of the algorithm in [CMS24].
In particular, we import the pseudocode of these steps, as well as their complexity analysis. When
appealing to formal statements from [CMS24], we refer to the full version of the paper (as indicated
in the corresponding bibliography entry).

Some additional notation. Throughout this appendix, we sometimes write a divisibility con-
straint d | τ as τ ≡d 0. We need a few definitions from [CMS24]. Below, let θ be the ordering of
exponentiated variables θ(x) := 2xn ≥ 2xn−1 ≥ · · · ≥ 2x0 = 1, for some n ≥ 1.

Definition 4 (Quotient System). A quotient system induced by θ is a system φ(x, q, r) of equalities,
inequalities, and divisibility constraints τ ∼ 0, where ∼ ∈ {<,≤,=,≡d: d ≥ 1} and τ is an quotient
term (induced by θ), that is, a term of the form

a · 2xn + f(q) · 2xn−1 + b · xn−1 + τ ′(x0, . . . , xn−2, r) ,

where a, b ∈ Z, f(q) is a linear term on quotient variables q, and τ ′ is a linear-exponential term
in which the remainder variables r do not occur exponentiated. Furthermore, for every remainder
variable r, the quotient system φ features the inequalities 0 ≤ r < 2xn−1.

84

Appendix B: The algorithm for deciding ILEP: Further information on Steps I and III

A disclaimer: Observe that quotient systems can be syntactically equal to linear-exponential pro-
grams. In particular, this happens when every linear term f(q) appearing in quotient terms is
an integer. However, [CMS24] keeps the two types of objects somewhat separated, as if they
are distinct “types” (in the sense of programming languages). That is, quotient systems are not
linear-exponential programs. In the algorithm from [CMS24], quotient systems only appear at the
beginning of Step I of the algorithm. To be more precise, let us look at the pseudocode of Step I
(Algorithm 10). In input, this step takes an ordering θ, and a linear-exponential program with
divisions φ. The foreach loop of line 2 translates φ into a quotient system (adding new quotient
and remainder variables). When the procedure reaches line 9, the translation is complete. All other
systems constructed by the algorithm (in Step I, γ and ψ) are linear-exponential programs.

The above distinction between linear-exponential programs and quotient systems is important
for the definition of least significant part of a term (introduced in Section 6 for linear-exponential
programs, but restated below to avoid confusion). In this definition, quotient terms and linear-
exponential terms are treated differently, and the definition becomes ill-formed if quotient systems
are mistakenly regarded as linear-exponential programs.

Definition 5 (Least Significant Part). The least significant part of a term τ , with respect to the
ordering θ, is defined as follows:

1. If τ is a linear-exponential term a · 2xn + b · xn + τ ′, with τ ′ linear-exponential term only
featuring xn in remainders (x mod 2y), its least significant part is the term b · xn + τ ′.

2. If τ is a quotient term a · 2xn + f(q) · 2xn−1 + b · xn−1 + τ ′, with τ ′ not featuring xn nor xn−1,
its least significant part is the term b · xn−1 + τ ′.

Moreover, let φ be either a linear-exponential program with divisions or a quotient system. We
denote by lst(φ, θ) the following set of least significant terms:

lst(φ, θ) =
{
±ρ :

ρ is the least significant part of a term τ appearing in an (in)equality τ ∼ 0
of φ, with respect to θ

}
.

An analogous distinction arises in the definition of linear norm:

Definition 6 (Linear norm). The linear norm ∥τ∥L of a term τ is defined as follows:

1. If τ is a linear-exponential term
∑n

i=1

(
ai · xi + bi · 2xi +

∑n
j=1 ci,j · (xi mod 2xj)

)
+ d, then

∥τ∥L := max{|ai| , |ci,j | : i, j ∈ [1..n]}, i.e., it reflects the maximum absolute value among the
coefficients of the linear terms xi and the remainder terms (xi mod 2xj).

2. If τ is a quotient term induced by θ, of the form τ = a · 2xn + f(q) · 2xn−1 + b · xn−1 + τ ′, then
∥τ∥L := max(|b| , ∥τ ′∥L, ∥f∥L). Note that ∥τ∥L accounts for the coefficients of the variables q.

Moreover, let φ be either a linear-exponential program with divisions or a quotient system. The
linear norm of φ is defined as ∥φ∥L := max{∥τ∥L : τ is a term appearing in an (in)equality of φ}.

The parameters #φ, ∥φ∥1 and mod(φ) extend instead trivially to quotient systems φ:

• #φ for the number of constraints (inequalities, equalities and divisibility constraints) in φ;

• terms(φ) for the set of all terms τ occurring in inequalities τ ≤ 0 or equalities τ = 0 of φ;

• ∥φ∥1 := max{∥τ∥1 : τ ∈ terms(φ)}.
For a quotient term τ = a·2xn+f(q)·2xn−1+b·xn−1+τ ′, we have ∥τ∥1 := |a|+|b|+∥f∥1+∥τ ′∥1.

• mod(φ) is the least common multiple of the divisors d of the divisibility constraints d | τ of φ.
We recall that, in these constraints, all integers appearing in τ belong to [0..d− 1].

85

Appendix B.1: Step I

B.1 Step I

Algorithm 10 presents the pseudocode of Step I. This pseudocode is obtained by merging (exclusively
to simplify the presentation) lines 4–14 of Algorithm 2 with lines 1–21 of Algorithm 3 from [CMS24].
The full specification of Algorithm 10 is recalled below.

Lemma 4 [CMS24]. There is a non-deterministic procedure with the following specification:

Input: θ(x) : ordering of exponentiated variables;
[Below, let 2x and 2y be the largest and second-largest terms in this ordering, and
let y be the vector obtained by removing x from x.]

φ(x, r) : linear-exponential program with divisions, implying r < 2x.
Variables r do not occur in exponentials.

Output of each branch (β):

γβ(qx, q, u) : linear program with divisions;
ψβ(y, rx, r

′) : linear-exponential program with divisions, implying rx < 2y ∧ r′ < 2y.
Variables rx and r′ do not occur in exponentials.

The variables qx, q, u, y, rx and r′ are common to all outputs, across all non-deterministic branches.
The procedure ensures that the system[

x
r

]
=

[
qx
q

]
· 2y +

[
rx
r′

]
, (3)

yields a one-to-one correspondence between the solutions of φ ∧ θ and the solutions of the formula∨
β

(
γβ ∧ ψβ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx) ∧ θ

)
. This correspondence is the identity for the vari-

ables these two formulae share (that is, the variables in x).

Proof. The correctness of Algorithm 10 follows from [CMS24, Proposition 4 and Lemma 23]:

• Lines 1–8. These lines are analyzed in the proof of [CMS24, Proposition 4] (Appendix C.3,
page 54). The foreach loop of line 2 (deterministically) manipulates φ into a quotient system
φ′. Let q and r′ be the set of all fresh quotient and reminder variables introduced in line 3
(across all iterations of the loop). This part of the algorithm ensure that[

x
r

]
=

[
qx
q

]
· 2y +

[
rx
r′

]
implies (φ ∧ θ) ⇐⇒ (φ′ ∧ θ) (34)

In [CMS24], lines 4–14 of Algorithm 2 construct φ′ to then pass it to Algorithm 3, which
performs (with respect to our pseudocode) the following lines 9–31.

• Lines 9–31. These lines are analyzed in the proof of [CMS24, Lemma 23] (Appendix C.2,
page 40; see in particular the subsection titled “Correctness of Step (i)”). In a nutshell, these
lines “divide” each quotient term in φ′ by 2y, by relying on the equivalences in Lemma 3. For
example, an equality a · 2x + f(q) · 2y + b · y + τ ′ = 0 is (non-deterministically) rewritten as
a · 2x−y + f(q) + r = 0 ∧ b · y + τ ′ = r · 2y. Note that b · y + τ ′ is the least significant part of
the term in the initial equality. Constraints concerning these least significant parts (in our
example, b · y + τ ′ = r · 2y) are added to the formula ψ (lines 18, 23, 27 and 31), whereas the
remaining constraints featuring the variable x (in our example, a · 2x−y + f(q) + r = 0) are
added to the formula γ (lines 26 and 30; note that the algorithm uses u as a proxy for 2x−y).

86

Appendix B.1: Step I

Algorithm 10 Step I of the algorithm from [CMS24]. See Lemma 4 for its full specification.

Input: θ(x) : ordering of exponentiated variables;
[Below, let 2x and 2y be the largest and second-largest terms in this ordering, and
let y be the vector obtained by removing x from x.]

φ(x, r) : linear-exponential program with divisions, implying r < 2x.
Variables r do not occur in exponentials.

Output of each branch (β):
γβ(qx, q, u) : linear program with divisions;
ψβ(y, rx, r

′) : linear-exponential program with divisions, implying rx < 2y ∧ r′ < 2y.
Variables rx and r′ do not occur in exponentials.

1: φ← φ[w / (w mod 2x) : w is a variable]
2: foreach r in r ∪ {x} do ▷ translate φ into a quotient system induced by θ
3: let qr and r′ be two fresh variables
4: φ← φ ∧ (0 ≤ r′ < 2y)
5: φ← φ[r′ / (r mod 2y)]
6: φ← φ[(r′ mod 2w) / (r mod 2w) : w is such that θ implies 2w ≤ 2y]
7: φ← φ[(qr · 2y + r′) / r] ▷ replaces only the linear occurrences of r
8: if r is x then (qx, rx)← (qr, r

′) ▷ the substitution of x in exponentials is delayed
9: let u be a fresh variable ▷ u is an alias for 2x−y

10: γ ← ⊤; ψ ← ⊤ ▷ new linear-exponential programs constructed from φ
11: ∆← ∅ ▷ map from linear-exponential terms to Z
12: foreach (τ ∼ 0) in φ, where ∼ ∈

{
=, <,≤,≡d: d ≥ 1

}
do

13: let τ be (a · 2x + f(x′) · 2y + ρ), where ρ is the least significant part of τ
14: if a = 0 and f(x′) is an integer then ψ ← ψ ∧ (τ ∼ 0)
15: else if the symbol ∼ belongs to {=, <,≤} then
16: if ∆(ρ) is undefined then
17: guess h← integer in [−∥ρ∥1, ∥ρ∥1]
18: ψ ← ψ ∧ ((h− 1) · 2y < ρ) ∧ (ρ ≤ h · 2y)
19: update ∆ : add the key–value pair (ρ, h)

20: h← ∆(ρ)
21: if the symbol ∼ is < then
22: guess ∼′ ← sign in {=, <}
23: ψ ← ψ ∧ (ρ ∼′ h · 2y)
24: ∼ ←≤
25: if the symbol ∼′ is = then h← h+ 1

26: γ ← γ ∧ (a · u+ f(x′) + h ∼ 0)
27: if the symbol ∼ is = then ψ ← ψ ∧ (h · 2y = ρ)

28: else ▷ ∼ is ≡d for some d ∈ N
29: guess h← integer in [1,mod(φ)]
30: γ ← γ ∧ (a · u+ f(x′)− h ∼ 0)
31: ψ ← ψ ∧ (h · 2y + ρ ∼ 0)

32: return (γ, ψ)

D
ec

o
u
pl

e
q
,
q z

a
n
d
u

fr
o
m

t
h
e

o
t
h
er

va
r
ia

bl
es

87

Appendix B.1: Step I

Since these lines of the algorithm are guided by the equivalences in Lemma 3, one obtains[
x
r

]
=

[
qx
q

]
· 2y +

[
rx
r′

]
implies (φ′ ∧ θ) ⇐⇒

∨
β

∃u
(
γβ ∧ ψβ ∧ (u = 2x−y) ∧ θ

)
, (35)

where
∨
β ranges over all non-deterministic branches β.

The lemma follows by Equations (34) and (35). Consider a solution to φ ∧ θ. We can uniquely

decompose the values x, y and r take in this solution by following the system
[
x
r

]
=

[
qx
q

]
·2y+

[
rx
r′

]
and the equation u = 2x−y, producing a solution to

∨
β

(
γβ ∧ψβ ∧ (u = 2x−y)∧ (x = qx ·2y+rx)∧θ

)
thanks to Equations (34) and (35). Conversely, from a solution to

∨
β

(
γβ ∧ ψβ ∧ (u = 2x−y) ∧

(x = qx · 2y + rx) ∧ θ
)
, we can compute (unique) values for the variables r following the system

r = q · 2y + r′, producing a solution to θ ∧ φ.

We now move to the complexity of Algorithm 10:

Lemma 22 [CMS24]. The algorithm from Lemma 4 (Step I) runs in non-deterministic polynomial
time. Consider its execution on an input (θ, φ) where θ(x) is an ordering of exponentiated variables
and φ(x, r) is a linear exponential program with divisions. In each non-deterministic branch β, the
algorithm returns a pair (γ, ψ), where γ(qx, q, u) is a linear program with divisions and ψ(y, rx, r′)
a linear-exponential program with divisions, such that (for every ℓ, s, a, c, d ≥ 1):

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | d

then



#lst(ψ, θ′) ≤ ℓ+ 2 · k
#ψ ≤ s+ 6 · k + 2 · ℓ
∥ψ∥L ≤ 3 · a
∥ψ∥1 ≤ 4 · c+ 5

mod(ψ) | d

and


#γ ≤ s+ 2 · k
∥γ[2u / u]∥L ≤ 3 · a
∥γ∥1 ≤ 2 · c+ 3

mod(γ) | d

where θ′ is the ordering obtained from θ by removing its largest term 2x, and k := 1 + #r.

Proof. We report the complexity analysis from [CMS24, Lemma 6 and Lemma 37]:

• Lines 1–8. These lines are analyzed in [CMS24, Lemma 6] (Appendix D.3, page 63). As
done in the sketch of the proof of Lemma 4, let us write φ′ for the quotient system obtained
from φ(x, r) after executing the foreach loop of line 2. [CMS24, Lemma 6] established the
following bounds on φ′:

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | d

then



#lst(φ′, θ) ≤ ℓ+ 2 · k
#φ′ ≤ s+ 2 · k
∥φ′∥L ≤ 3 · a
∥φ′∥1 ≤ 2 · (c+ 1)

mod(φ′) | d

(36)

• Lines 9–31. These lines are analyzed in [CMS24, Lemma 37] (Appendix D.2, page 59; see
in particular the subsection titled “Step (a)”). Let (γ, ψ) be an output of Algorithm 10. The

88

Appendix B.2: Step III

following bounds are established:

if



#lst(φ′, θ) ≤ ℓ
#φ′ ≤ s
∥φ′∥L ≤ a
∥φ′∥1 ≤ c
mod(φ′) | d

then



#lst(ψ, θ′) ≤ ℓ
#ψ ≤ s+ 2 · ℓ
∥ψ∥L ≤ a
∥ψ∥1 ≤ 2 · c+ 1

mod(ψ) | d

and


#γ ≤ s
∥γ[2u / u]∥L ≤ a
∥γ∥1 ≤ c+ 1

mod(γ) | d

(37)

Note that above (and in the statement of the lemma) ∥γ[2u / u]∥L is considered instead of ∥γ∥L.
As reported in [CMS24, Lemma 37], this is because only the coefficients of the variables distinct
from u are interesting for the overall analysis of the complexity of the algorithm (in any case,
we have a bound of c + 1 on this coefficient, given by ∥γ∥1). Performing the substitution
[2u / u] makes it so that the coefficients of u are not accounted when computing ∥·∥L.

The bounds in the statement of the lemma are obtained by imply conjoining the bounds in Equa-
tions (36) and (37). The fact that Algorithm 10 runs in non-deterministic polynomial time follows
again directly from [CMS24, Lemma 6 and Lemma 37].

B.2 Step III

Algorithm 11 presents the pseudocode of Step III. It corresponds to lines 24–34 of Algorithm 3
from [CMS24]. Note that line 24 of that algorithm calls a procedure named SolvePrimitive; in
our pseudocode, this line is replaced directly with the code of SolvePrimitive (i.e., with lines 1–15
of Algorithm 4 from [CMS24]).

Lemma 6 [CMS24]. There is a non-deterministic procedure with the following specification:

Input: γ′(qx, u) : linear program with divisions.

Output of each branch (β): γ′′β(qx) : linear program with divisions;
ψ′′β(y, rx) : linear-exponential program with divisions.

The procedure ensures that the equation

x = qx · 2y + rx (5)

yields a one-to-one correspondence between the solutions of γ′ ∧ (u = 2x−y) ∧ (x = qx · 2y + rx)
and the solutions of

∨
β

(
γ′′β ∧ ψ′′β

)
. This correspondence is the identity for the variables these two

formulae share (that is, y, qx and rx).

Proof. The correctness of the procedure directly follows from [CMS24, Lemma 21 and Lemma 32]
(Appendix C.1, page 36, and Appendix C.2, page 52).

Here is the complexity of Algorithm 11:

Lemma 23 [CMS24]. The algorithm from Lemma 6 (Step III) runs in non-deterministic polynomial
time. Consider its execution on an input linear program with divisions γ′. In each non-deterministic
branch β, the algorithm returns a pair (γ′′, ψ′′), where γ′′ is a linear program with divisions and ψ′′

is a linear-exponential program with divisions, such that (for every s, a, c, d ≥ 1):

if


#γ′ ≤ s
∥γ′[2u / u]∥L ≤ a
∥γ′∥1 ≤ c
mod(γ′) | d

then


#γ′′ ≤ s+ 2

∥γ′′∥L ≤ a
∥γ′′∥1 ≤ max(25c3, c · d)
mod(γ′′) | lcm(d, ϕ(d))

and


#ψ′′ ≤ 3

∥ψ′′∥L ≤ 1

∥ψ′′∥1 ≤ 12 + 4 · log(max(c, d))

mod(ψ′′) | ϕ(d)

89

Appendix B.2: Step III

Algorithm 11 Step III of the algorithm from [CMS24]. See Lemma 6 for its full specification.

Input: γ′(qx, u) : linear program with divisions.
Output of each branch (β): γ′′β(qx) : linear program with divisions;

ψ′′β(y, rx) : linear-exponential program with divisions.

▷ Recall: the procedure assumes both u = 2x−y and x = qx · 2y + rx to hold (see Lemma 6)
1: let γ′ be (χ ∧ φ), where χ is the conjunction of all (in)equalities from γ′ containing u
2: (d, n)← pair of non-negative integers such that mod(γ′) = d · 2n and d is odd
3: C ← max

{
n, 3 + 2 ·

⌈
log(|b|+|c|+1

|a|)
⌉
: (a · u+ b · qx + c ∼ 0) in χ, where ∼ ∈ {=, <,≤}

}
4: guess c← element of [0..C − 1] ∪ {⋆} ▷ ⋆ signals x− y ≥ C
5: if c is not ⋆ then
6: χ← (x− y = c)

7: γ ← γ′[2c / u] ▷ according to x− y = c and u = 2x−y

8: else ▷ assuming v ≥ C, (in)equalities in χ simplify to ⊤ or ⊥
9: assert(χ has no equality, and in all its inequalities u has a negative coefficient)

10: guess r ← integer in [0..d− 1] ▷ remainder of 2x−y−n modulo d when x− y ≥ C ≥ n
11: assert(the divisibility d | 2v − 2n · r is satisfied by some v ∈ [0..d− 1])
12: r′ ← discrete logarithm of 2n · r base 2, modulo d
13: d′ ← multiplicative order of 2 modulo d
14: χ← (x− y ≥ C) ∧ (d′ | x− y − r′)
15: γ ← φ[2n · r / u] ▷ 2n · r is a remainder of 2x−y modulo mod(γ′) = d · 2n

16: χ← χ[qx · 2y + rx / x] ▷ apply substitution: x is eliminated
17: if χ is (−qx · 2y − rx + y + c = 0) then ▷ true if χ was constructed in line 6
18: guess b← integer in [0..c]

19: γ ← γ ∧ (qx = b)

20: ψ ← b · 2y = −rx + y + c

21: else ▷ true if χ was constructed in line 14
22: let χ be (−qx · 2y − rx + y + C ≤ 0) ∧ (d′ | qx · 2y + rx − y − r′), for some d′, r′ ∈ N
23: guess (b, g)← pair of integers in [0..C]× [1..d′]

24: γ ← γ ∧ (qx ≥ b) ∧ (d′ | qx − g)
25: ψ ← ((b− 1) · 2y < −rx + y + C) ∧ (−rx + y + C ≤ b · 2y) ∧ (d′ | g · 2y + rx − y − r′)
26: return (γ, ψ)

E
li

m
in

at
e
x

D
ec

o
u
pl

in
g
q x

90

Appendix C: Proofs of statements from Part I

Proof. The proof of this lemma follows from the proofs of [CMS24, Lemma 36 and Lemma 37]. For
completeness, we give below a standalone analysis of the bounds on γ′′ and ψ′′.

Analysis on γ′′: The relevant lines are line 7, line 15, line 20 and line 25.

bound on #γ′′: The system γ′′ is initialized with #γ′ constraints in lines 7 or 15. The
subsequent lines 20 and 25 add at most 2 constraints.

bound on ∥γ′′∥L: Recall the γ′′ is a linear program with divisions featuring a single variable
qx (see Lemma 6). When this system is initialized in lines 7 or 15, the absolute values
of the coefficients of qx are bounded by ∥γ′[2u / u]∥L ≤ a. Lines 20 and 25 only add
constraints in which qx appears with coefficient 1 ≤ a. Hence, ∥γ′′∥L ≤ a.

bound on ∥γ′′∥1: When the system γ′′ is initialized in lines 7 or 15, its norm ∥·∥1 is bounded
by ∥γ′∥1 ·max(2C ,mod(γ′)), where C is the integer defined in line 3. The (in)equalities
added in lines 20 and 25 feature term with norm ∥·∥1 bounded by C+1 ≤ 2C . Therefore,

∥γ′′∥1 ≤ c ·max(2C , d) Hby ∥γ′∥1 ≤ c and mod(γ′) ≤ dI
≤ c ·max(23+2·(log(c)+1), d) Hby def. of C and 2n ≤ mod(γ′)I

≤ c ·max(25c2, d) ≤ max(25c3, c · d).

bound on mod(γ′′): When γ′′ is initialized in lines 7 or 15, its parameter mod(·) is equal
to mod(γ′). Line 20 adds no divisibility constraints, whereas 25 adds a single divisibility
constraints with divisor d′. Here, d′ is the multiplicative order of 2 modulo the largest
odd factor of mod(γ′). That is, d′ is a divisor of ϕ(mod(γ′)), which in turn is a divisor
of ϕ(d), where ϕ is Euler’s totient function. Therefore, mod(γ′) divides lcm(d, ϕ(d)).

Analysis on ψ′′: The relevant lines are line 20 and line 25, which define ψ′′ depending on χ.

bound on #ψ′′: The system ψ′′ has a single equality when defined in line 20, and three
constraints when defined in line 25.

bound on ∥ψ′′∥L: The variables occurring in ψ′′ are rx and y. Following lines 20 and 25,
these variables always appear with coefficients ±1.

bound on ∥ψ′′∥1: Following lines 20 and 25, we see that ∥ψ′′∥1 ≤ 2 + 2 · C, where C is the
integer defined as in line 3. Therefore,

∥ψ′′∥1 ≤ 2 + 2 · C
≤ 2 + 2 ·max(⌈log(d)⌉ , 3 + 2 ⌈log(c)⌉) Husing ∥γ′∥1 ≤ c and 2n ≤ mod(γ′) ≤ dI
≤ max(2 log(d) + 4, 4 log(c) + 12)

≤ 12 + 4 · log(max(c, d)).

bound on mod(ψ′′): From line 25 we conclude that mod(ψ′′) is a divisor of d′. As discussed
in the analysis of mod(γ′′), this implies that it also divides ϕ(d).

C Proofs of statements from Part I

C.1 Proofs of statements from Section 3

Lemma 7. Statement
in page 20

Let φ be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. The set of solutions of φ is (x,mod(x, φ))-periodic.

91

Appendix C.1: Proofs of statements from Section 3

Proof. For brevity, define p := mod(x, φ). Consider two solution ν and ν + [x 7→ m] to φ, with
m ≥ p. (Recall that ν+ [x 7→ m] denotes the map obtained from ν by increasing the value assigned
to x by m.) We prove that ν ′ := ν+[x 7→ p] is also solution to φ. We analyse divisibility constraints
and (in)equalities separately. Clearly, ν ′ satisfies all constraints in which x does not appear, hence
below we only consider constraints featuring x (linearly, as per hypothesis).

divisibility constraints. Consider a divisibility constraint ψ := (d | c · x+ τ). By definition of p,
we have d | p, and therefore c · ν(x) and c · (ν(x) + p) have the same reminder modulo d.
Hence, ν ′ satisfies ψ.

equalities and inequalities. We only show the case of inequalities (the proof for equalities is
analogous, as they can be seen as a conjunction of two inequalities). Consider an inequality
χ := (c·x+τ ≤ 0). Both ν and ν+[x 7→ m] satisfy this inequality, so we have c · ν(x) + ν(τ) ≤ 0
and c · (ν(x) +m) + ν(τ) ≤ 0. Recall that m ≥ p ≥ 1. If c < 0, then c · (ν(x) + p) + ν(τ) <
c · ν(x) + ν(τ) ≤ 0. If instead c > 0, then c · (ν(x) + p) + ν(τ) < c · (ν(x) +m) + ν(τ) ≤ 0. In
both cases, we conclude that ν ′ satisfies χ.

Lemma 8. Statement
in page 21

Let φ(x) be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. Let p := mod(x, φ), and let f(x) be a (x, p)-monotone function locally to the set of
solutions to φ. If the instance (f, φ) has a maximum (analogously, a minimum), then it has one
satisfying an equation a·x+τ+r = 0, where (a·x+τ) ∈ terms(φ∧x ≥ 0), a ̸= 0, and r ∈ [0.. |a|·p−1].

Proof. We prove the lemma for the case of maximization. The case of minimization is analogous.
For simplicity, let x = (x1, . . . , xn). Given a solution ν to φ, we write ∆p

x[f](ν) as a shortcut for
∆p
x(ν(x1), . . . , ν(xn)). Assume that an optimal solution to (f, φ) exists.

The lemma is trivially true when x occurs in an equality of φ, as all optima must satisfy that
equality. Moreover, if x does not occur in equalities nor inequalities of φ, then the existence of an
optimum implies that ∆p

x[f](ν) = 0 whenever ν and ν+[x 7→ p] are solutions to φ. We only need to
make sure to satisfy the divisibility constraints, and therefore it suffices to consider equations x = r
with r ∈ [0..p − 1]. These equations are among those considered in the statement of the lemma
(since we consider terms(φ ∧ x ≥ 0)). Below, we assume that x occurs in an inequality of φ but in
no equality. We divide the proof depending on the sign of ∆p

x[f].

case: ∆p
x[f](ν) > 0 whenever ν and ν + [x 7→ p] are solutions to φ. Consider a solution ν to

φ, and assume that it does not satisfy any equation a · x + τ + r = 0 having (a · x + τ) ∈
terms(φ ∧ x ≥ 0), a ̸= 0, and r ∈ [0.. |a| · p− 1]. We show that then ν ′ := ν + [x 7→ p] is still a
solution to φ. From ∆p

x[f](ν) > 0, the value of the objective function f for the solution ν ′ is
greater than the one for ν. In particular, this means that ν cannot be optimal.

First, observe that ν ′ still satisfies all inequalities in φ of the form b · x ≤ τ with b ≤ 0, as
well as all divisibility constraints. For the inequalities, this follows from b · ν ′(x) ≤ b · ν(x) ≤
ν(τ) = ν ′(τ). For the divisibility constraints, it suffices to observe that ν(x) and ν ′(x) have
the same residue modulo p = mod(x, φ). Consider then an inequality a · x ≤ τ with a > 0.
We have (a · x− τ) ∈ terms(φ), and so ν does not satisfy any equation a · x− τ + r = 0 with
r ∈ [0..a · p− 1]. Hence, there is a positive integer k ≥ a · b such that a · ν(x)− τ + k = 0. We
have a · ν ′(x)− τ + k′ = 0, where k′ := k − a · b ≥ 0; that is, ν ′ satisfies a · x ≤ τ .

case: ∆p
x[f](ν) < 0 whenever ν and ν + [x 7→ p] are solutions to φ. Consider a solution ν that

does not satisfy any equation a · x + τ + r = 0, where (a · x + τ) ∈ terms(φ ∧ x ≥ 0), a ̸= 0,
and r ∈ [0.. |a| · p − 1]. This time we show that ν ′ := ν + [x 7→ −p] is still a solution to φ.

92

Appendix C.1: Proofs of statements from Section 3

From ∆p
x[f](ν) < 0, the value that f takes for ν ′ is greater that the value that it takes for ν;

and therefore ν cannot be optimal.

As in the previous case, it is trivial to see that ν ′ satisfies all inequalities of the form b ·x ≤ τ ,
with b ≥ 0, as well as all divisibility constraints. Consider then an inequality a · x ≤ τ with
a < 0. Since ν does not satisfy any equation a · x − τ + r = 0 with r ∈ [0.. |a| · p − 1], we
conclude that ν(τ) ≥ a · ν(x) + |a| · p. Since a < 0, we have a · ν(x) + |a| · p = a · (̇ν(x)− p).
Hence, ν ′ satisfies a · x ≤ τ .

case: ∆p
x[f](ν) = 0 whenever ν and ν + [x 7→ p] are solutions to φ. Let ν be an optimal solu-

tion. Recall that we are assuming that x occurs in an inequality a · x ≤ τ of φ, and in no
equality. Suppose that a > 0 (the case for a < 0 is analogous). Let a1 ·x ≤ τ1, . . . , aj ·x ≤ τj
be an enumeration of all inequalities featuring x and such that ai > 0. Let k ∈ [1..j] satisfying

ν(τk)

ak
= min

{
ν(τi)

ai
: i ∈ [1..j]

}
. (38)

Let ℓ ∈ N be the maximum natural number such that ak · (ν(x) + ℓ · p) ≤ ν(τk), and define
ν ′ := ν + [x 7→ ℓ · p]. We show that ν ′ is still an optimal solution to φ, and that it satisfies an
equation ak · x− τk + r = 0, for some r ∈ [0..ak · p− 1].

To prove that ν ′ is a solution to φ, observe first that, exactly as in the first case of the proof
(∆p

x[f](ν) > 0), the map ν ′ satisfies all inequalities in φ of the form b·x ≤ τ ′ with b ≤ 0, as well
as all divisibility constraints. Given an inequality ai ·x ≤ τi with i ∈ [1..j], from Equation (38)
we conclude that ν ′(x) ≤ ν(τk)

ak
≤ ν(τi)

ai
, and therefore ai · ν ′(x) ≤ ν(τi) = ν ′(τi). Hence, ν ′

is a solution to φ. It is also an optimal solution. Indeed, since the set of solutions of φ is
(x, p)-periodic (Lemma 7), and ∆p

x[f](ν ′′) = 0 whenever ν ′′ and ν ′′ + [x 7→ p] are solutions to
φ, we conclude that ν and the optimal solution ν ′ have the same value with respect to the
objective function f .

Lastly, ℓ has been defined to be such that ak · ν ′(x) ≤ ν(τk) < ak · (ν ′(x) + p). Observe
that ak · (ν ′(x) + p)− ak · ν ′(x) = ak · p. Therefore, there is an r ∈ [0..ak · p − 1] such that
ak · ν ′(x) + r = ν(τk); that is, ν ′ satisfies ak · x− τk + r = 0.

Corollary 2. Statement
in page 21

Let φ be a linear-exponential program with divisions, and let x be a variable occurring
linearly in φ. If φ has a solution, then it has one satisfying an equation a · x + τ + r = 0, where
(a · x+ τ) ∈ terms(φ ∧ x ≥ 0), a ̸= 0, and r ∈ [0.. |a| ·mod(x, φ)− 1].

Proof. Consider the objective function f that simply returns the value assigned to x. This is clearly
(x,mod(x, φ))-monotone locally to the set of solutions of φ. Since we are looking at non-negative
solutions to φ, f ranges over the natural numbers, and so it has a minimum. The corollary follows
then immediately from Lemma 8.

Lemma 9. Statement
in page 21

Let φ be a linear-exponential program with divisions, and x be a variable occurring
linearly in φ. Suppose that the set of solutions to φ has a (x,mod(x, φ))-monotone decomposition
R1, . . . , Rt for a function f , where each Ri is the set of solutions of an integer linear-exponential
program with divisions ψi in which x occurs linearly. If the instance (f, φ) has a maximum (anal-
ogously, a minimum), then it has one satisfying an equation a · x + τ + r = 0 such that a ̸= 0,
(a · x+ τ) ∈ terms(ψi ∧ x ≥ 0) and r ∈ [0.. |a| ·mod(x, ψi)− 1], for some i ∈ [1..t].

Proof. By definition of monotone decomposition, φ is equivalent to ψ1∨· · ·∨ψt. Let ν be a solution
to φ that maximizes (or minimizes) the objective function f . There is i ∈ [1..t] such that ν is

93

Appendix C.2: Proofs of Lemma 10 and Claim 2 from Section 4

a solution to ψi. Since ψi implies φ, the solution ν is optimal for (f, ψi). By Lemma 8, there
is an optimal solution ν ′ to (f, ψi) that satisfies an equation a · x + τ + r = 0, where a ̸= 0,
(a ·x+τ) ∈ terms(ψi∧x ≥ 0), and r ∈ [0.. |a| ·mod(x, ψi)−1]. The value f takes with respect to the
two solutions ν and ν ′ is the same, and since ψi implies φ, the map ν ′ is also a solution to φ.

C.2 Proofs of Lemma 10 and Claim 2 from Section 4

Lemma 10. Statement
in page 24

Let d,C ∈ R with d ≥ 1 and C ≥ 4 · log2(d) + 8. Then, 2C − 2C/2 − d · C ≥ 0.

Proof. From C ≥ 2 we get 2C − 2C/2 − d ·C ≥ 2C/2(2C/2 − 1)− d ·C ≥ 2C/2 − d ·C. So, it suffices
to prove 2C/2 − d · C ≥ 0. Consider the function f(x) := 2x/2 − d · x, as well as its first derivative
f ′(x) = 1

2 · ln(2) · 2
x/2−d and second derivative f ′′(x) = 1

4 · ln(2)
2 · 2x/2. Note that f ′′ is positive for

all x ≥ 0, and f ′(4 · log2(d)+8) = 8 · ln(2) ·d2−d ≥ 4 ·d2−d ≥ 0. Therefore, f is increasing for every
x ≥ 4 · log2(d)+8, and f(C) ≥ f(4 · log2(d)+8) = 16 ·d2−d ·(4 · log2(d)+8) ≥ 16 ·d2−12 ·d2 ≥ 0.

The following claim refers to the objects defined throughout the proof of Proposition 3.

Claim 2. Statement
in page 29

For every σ ∈ P, the function C[xm] is (q, p)-monotone locally to φ ∧ φ[q + p / q] ∧ χσ.

Proof. Let us assume that the quantifier-free part of the formula χσ implies xm ≥ xm (a similar
argument applies if it instead implies xm ≥ xm). We show that for any two solutions ν and
ν ′ := ν + [q 7→ p] of φ ∧ φ[q + p / q] ∧ χσ, the objective function C[xm] evaluated at ν ′ is at least as
large as its value at ν.

Let ν and ν ′ be such a pair of solutions. We start by focusing on ν. Define ν(w) as the vector of
integers obtained by evaluating C and C+p according to ν, to then extract the values corresponding
to the variables in w (which include xm and xm). Since χσ contains the equations describing the
assignments in C and C+p, the vector ν(w) is the only one that satisfies the quantifier-free part
of χσ for the solution ν. Let a and a represent the values in ν(w) corresponding to xm and xm,
respectively. Specifically, a is the value taken by C[xm] for ν, and a is the value taken by C+p[xm]
for ν. Since ν ′ also satisfies φ, Claim 1 implies that the value of C[xm] for ν ′ is the same as the
value of (x̄m, C+p) for ν, which is a. Finally, because we assume that xm ≥ xm is implied by the
quantifier-free part of χσ, we conclude that a ≥ a, completing the proof.

C.3 Bareiss algorithm

In this appendix we recall the classical Bareiss algorithm from [Bar68] and of some of its standard
properties. These properties are then lifted to our variation in Appendix C.4, where we provide
the proofs of Lemmas 15 to 18. Throughout this and the next appendix, we follow the notation
introduced in Section 5.3, in particular when it comes to defining the subdeterminants b(ℓ)i,j and b(ℓ)r←j
of a given matrix with entries denotes as bi,j .

We describe the standard Bareiss’s algorithm from [Bar68]. Consider an m×d integer matrix B0:

B0 :=

 b1,1 . . . b1,d
...

. . .
...

bm,1 . . . bm,d

 .

As done in Section 5.3, fix k ∈ [0..min(m, d)] (the number of iterations the algorithm will perform),
and define λ0 := 1 and λℓ := b

(ℓ−1)
ℓ,ℓ , for every ℓ ∈ [1..k]. We assume that every λℓ is non-zero.

94

Appendix C.4: Analysis of the variation of Bareiss algorithm

Starting from the matrix B0, Bareiss algorithm iteratively constructs a sequence of matrices
B1, . . . , Bk as follows. Consider ℓ ∈ [0..k − 1], and let Bℓ be the matrix

Bℓ :=

 g1,1 . . . g1,d
...

. . .
...

gm,1 . . . gm,d

 .

The matrix Bℓ+1 is constructed from Bℓ by applying the following transformation

1: for every row i except row ℓ+ 1 do

2: multiply the ith row of Bℓ by gℓ+1,ℓ+1 ▷ the entry (i, ℓ+ 1) of Bℓ is now gℓ+1,ℓ+1 · gi,ℓ+1

3: subtract gi,ℓ+1 · (gℓ+1,1, . . . , gℓ+1,d) from the ith row of Bℓ ▷ the entry (i, ℓ+ 1) is now 0

4: divide each entry of the ith row of Bℓ by λℓ ▷ these divisions are without remainder

The next three results from [Bar68] give a complete description of the entries of B0, . . . , Bk:
Lemma 33 contains a trivial observation that we will use many times in the other two lemmas,
Lemma 34 describes the last m− ℓ rows of these matrices, and Lemma 35 describes the first ℓ rows.

Lemma 33 [Bar68]. For all ℓ ∈ [0..k−1], the (ℓ+1)th rows of the matrices Bℓ and Bℓ+1 are equal.

Lemma 34 [Bar68]. Consider ℓ ∈ [0..k]. For every i ∈ [ℓ+1..m] and j ∈ [1..d], the entry in position
(i, j) of the matrix Bℓ is b(ℓ)i,j . In particular, this entry is zero whenever j ≤ ℓ.

Lemma 35 [Bar68]. Consider ℓ ∈ [1..k]. For all i ∈ [1..ℓ] and j ∈ [1..d], the entry in position (i, j)

of Bℓ is b(ℓ)i←j. In particular, this entry is zero if j ≤ ℓ and i ̸= j, and it is instead b(ℓ−1)ℓ,ℓ when i = j.

C.4 Analysis of the variation of Bareiss algorithm

We are now ready to analyze our variation of Bareiss algorithm, and prove Lemmas 15 to 18. Below,
let k, B0, B′0, µ, Ug and λℓ be defined as in Section 5.3. We recall below how the matrices B′1, . . . , B′k
are constructed from B′0. Consider ℓ ∈ [0..k − 1], and let B′ℓ be the matrix

B′ℓ :=

h1,1 . . . h1,d
...

. . .
...

hm,1 . . . hm,d

 .

The matrix B′ℓ+1 is constructed from B′ℓ by applying the following transformation

01: let ± be the sign of hℓ+1,ℓ+1, and α :=
±hℓ+1,ℓ+1

µ ▷ this division is without remainder

02: multiply the row ℓ+ 1 of Bℓ by ±1
03: for every row i except row ℓ+ 1 do

04: let β :=
hi,ℓ+1

µ ▷ this division is without remainder

05: multiply the ith row of B′ℓ by α ▷ B′ℓ(i, ℓ+ 1) is now α · gi,ℓ+1

06: subtract ±β · (hℓ+1,1, . . . , hℓ+1,d) from the ith row of B′ℓ
07: divide each entry of the ith row of B′ℓ by |λℓ| ▷ these divisions are without remainder

We now show that the main relationship between the matrices computed with the above transfor-
mation, and the sequence of matrices B0, . . . , Bk computed with Bareiss algorithm.

95

Appendix C.4: Analysis of the variation of Bareiss algorithm

Lemma 36. For every ℓ ∈ [0..k], B′ℓ = ±Bℓ · Ug, where ± is the sign of λℓ.

Proof. Below, we write ±ℓ for the sign of λℓ. The proof is by induction on ℓ.

base case: ℓ = 0. Trivial from the definition of B′0 (recall that λ0 = 1 in this case).

induction hypothesis. Given ℓ ≥ 1, we have B′ℓ−1 = ±ℓ−1Bℓ−1 · Ug.

induction step: ℓ ≥ 1. From the induction hypothesis, for every i ∈ [1..m] the ith rows ri and r′i
of Bℓ−1 and B′ℓ−1 are, respectively,

ri = (ri,1, . . . , ri,d), r′i = ±ℓ−1(µ · ri,1, . . . , µ · rℓ,g, ri,g+1, . . . , ri,d),

for some integers ri,1, . . . , ri,d. To show that B′ℓ = ±ℓBℓ ·Ug, we analyze the pseudocodes used
to construct Bℓ and B′ℓ, considering each row separately.

Let us start by considering the ℓth row. In the case of Bℓ, this row coincides with rℓ. In the
case of B′ℓ, this row is instead ±r′ℓ, where ± is the sign of ±ℓ−1 · µ · rℓ,ℓ. By Lemma 34 and
from the definition of λℓ, we have rℓ,ℓ = λℓ. Since µ ≥ 1, ±1 = ±ℓ−1 ±ℓ 1, and therefore ±r′ℓ
is equal to ±ℓ(µ · rℓ,1, . . . , µ · rℓ,g, rℓ,g+1, . . . , rℓ,d), as required.

Consider now i ∈ [1..m] with i ̸= ℓ. Following the code of Bareiss algorithm, the ith row of Bℓ
is given by 1

λℓ−1
· (rℓ,ℓ · ri − ri,ℓ · rℓ). The entry of Bℓ in position (i, j), with j ∈ [1..d], is thus

ti,j :=
rℓ,ℓ · ri,j − ri,ℓ · rℓ,j

λℓ−1
.

The ith row of B′ℓ is instead 1
|λℓ−1| · (α · r

′
i−±β · r′ℓ), where ± is again the sign of ±ℓ−1µ · rℓ,ℓ,

and α :=
±±ℓ−1µ·rℓ,ℓ

µ =
±ℓµ·rℓ,ℓ

µ and β :=
±ℓ−1µ·ri,ℓ

µ are defined as in line 04 of the pseudocode.
For every j ∈ [1..g], the entry of B′ℓ in position (i, j) is therefore

t′i,j :=
α · (±ℓ−1µ · ri,j)−±β · (±ℓ−1µ · rℓ,j)

|λℓ−1|

=
±ℓrℓ,ℓ · (±ℓ−1µ · ri,j)−±ℓri,ℓ(±ℓ−1µ · rℓ,j)

±ℓ−1λℓ−1
= ±ℓµ ·

rℓ,ℓ · ri,j − ri,ℓ · rℓ,j
λℓ−1

= ±ℓµ · ti,j .

An analogous manipulation shows t′i,j = ±ℓti,j , for every j ∈ [g + 1..d]. We thus have
(t′i,1, . . . , t

′
i,d) = ±ℓ(µ · ti,1, . . . , µ · ti,g, ti,g+1, . . . , ti,d), which concludes the proof.

By relying on Lemma 36, we can easily rephrase the properties of Bareiss algorithm from Ap-
pendix C.3 to our variation, proving Lemmas 15 to 17.

Lemma 15. Statement
in page 41

For all ℓ ∈ [0..k− 1], the (ℓ+1)th row of B′ℓ+1 is obtained by multiplying the (ℓ+1)th
row of B′ℓ by the sign of its (ℓ+ 1)th entry.

Proof. This is a simple observation on the effects of lines 01 and 02 of the procedure.

Lemma 16. Statement
in page 41

Consider ℓ ∈ [0..k] and i ∈ [ℓ+ 1..m], and let ± be the sign of λℓ. Then:

1. For every j ∈ [1..g], the entry in position (i, j) of the matrix B′ℓ is ±µ · b(ℓ)i,j .
(In particular, this entry is zero whenever j ≤ ℓ.)

2. For every j ∈ [g + 1..d], the entry in position (i, j) of the matrix B′ℓ is ±b(ℓ)i,j .

96

Appendix C.4: Analysis of the variation of Bareiss algorithm

Proof. Directly from Lemma 36 and Lemma 34.

Lemma 17. Statement
in page 41

Consider ℓ ∈ [1..k] and i ∈ [1..ℓ], and let ± be the sign of λℓ. Then:

1. For every j ∈ [1..g], the entry in position (i, j) of B′ℓ is ±µ · b(ℓ)i←j.
(In particular, this entry is zero if j ≤ ℓ and i ̸= j, and it is instead ±µ · b(ℓ−1)ℓ,ℓ when i = j.)

2. For every j ∈ [g + 1..d], the entry in position (i, j) of B′ℓ is ±b(ℓ)i←j.

Proof. Directly from Lemma 36 and Lemma 35.

Lastly, we move to the proof of Lemma 18, which relies on Laplace expansions. Lemma 37 below
recalls this notion using determinants of the form a

(ℓ)
r←j . These determinants have two straightfor-

ward properties:

1. If j ≤ ℓ and r ̸= j, then the jth and rth columns of the submatrix corresponding to this
determinant are identical. Therefore, a(ℓ)r←j = 0.

2. If j = r then a(ℓ)j←j = a
(ℓ−1)
ℓ,ℓ .

Lemma 37 (Laplace Expansion). For every i, j, ℓ ∈ N satisfying ℓ ≥ 1, ℓ < i ≤ m and ℓ < j ≤ d,

a
(ℓ)
i,j = a

(ℓ−1)
ℓ,ℓ · ai,j −

∑ℓ

r=1
a
(ℓ)
r←j · ai,r. (39)

Proof. Equation (39) is not the standard way of writing the Laplace expansion, but it is one that
will be very natural for our purposes. A more standard way of writing this identity is:

a
(ℓ)
i,j = a

(ℓ−1)
ℓ,ℓ · ai,j +

∑ℓ

r=1
(−1)r+ℓ+1mr · ai,r , (40)

where mr := det

a1,1 . . . a1,r−1 a1,r+1 . . . a1,ℓ a1,j
...

. . .
...

...
...

. . .
...

aℓ,1 . . . aℓ,r−1 aℓ,r+1 . . . aℓ,ℓ aℓ,j

.

The matrix M used to compute mr features the same columns as the matrix M ′ used to compute
a
(ℓ)
r←j . In particular, M ′ is obtained from M by applying a cyclic permutation to the last ℓ− r + 1

columns, so that the column (a1,j , . . . , aℓ,j) appears first among those. Recall that swapping two rows
of a matrix changes the sign of its determinant. The permutation used to computeM ′ formM can be
realized with ℓ−r swaps, hence (−1)ℓ−rmr = a

(ℓ)
r←j . Therefore, (−1)r+ℓ+1mr = (−1)r+ℓ+1+r−rmr =

−a(ℓ)r←j , showing that Equations (39) and (40) are equivalent.

Lemma 18. Statement
in page 42

Let ℓ ∈ [0..k] and i ∈ [ℓ+ 1..m]. Consider the following transformation applied to B′0:

1: multiply the ith row of B′0 by |λℓ|
2: for r in [1..ℓ] do subtract bi,r · ur to the ith row of B′0, where ur is the rth row of B′ℓ

After the transformation, the ith rows of B′0 and B′ℓ are equal.

Proof. Note that if ℓ = 0, then the transformation does not modify B0 (recall that λ0 = 1), and the
lemma is therefore trivially true. Let us consider then ℓ ≥ 1, and write v for the ith row of B′0 after
the transformation. Let us compute an expression for the entries in v. After executing line 1, the ith

97

Appendix C.5: Proofs of Lemma 13 from Section 5

row of B0 is of the form ±b(ℓ−1)ℓ,ℓ ·(µ ·bi,1, . . . , µ ·bi,g, bi,g+1 . . . , bi,d), where ± is the sign of λℓ = b
(ℓ−1)
ℓ,ℓ .

From Lemma 17, the vector ur from line 2 is ur = ±(µ · b(ℓ)r←1, . . . , µ · b
(ℓ)
r←g, b

(ℓ)
r←g+1, . . . , b

(ℓ)
r←d). After

performing all subtractions from line 2 to the ith row, we obtain the vector v. Its jth entry is:

±µj · (b(ℓ−1)ℓ,ℓ · bi,j −
∑ℓ

r=1
b
(ℓ)
r←j · bi,r),

where µj := µ whenever j ≤ g, and otherwise µj := 1.
We show that the expression (b

(ℓ−1)
ℓ,ℓ · bi,j −

∑ℓ
r=1 b

(ℓ)
r←j · bi,r) equals b(ℓ)i,j , thus establishing that

v is the ith row of B′ℓ by Lemma 16. When j > ℓ, this results follows directly from Lemma 37.
When j ≤ ℓ instead, observe that b(ℓ)i,j = 0 (Lemma 16), and it suffices to show that the expression

(b
(ℓ−1)
ℓ,ℓ · bi,j −

∑ℓ
r=1 b

(ℓ)
r←j · bi,r) is also zero. For every r ∈ [1..ℓ] with r ̸= j, the determinant b(ℓ)r←j

is zero; as the jth and rth columns of the corresponding matrix are identical. The expression thus
simplifies to (b

(ℓ−1)
ℓ,ℓ · bi,j − b(ℓ)j←j · bi,j) = (b

(ℓ−1)
ℓ,ℓ · bi,j − b(ℓ−1)ℓ,ℓ · bi,j) = 0.

C.5 Proofs of Lemma 13 from Section 5

Lemma 13. Statement
in page 36

Given in input a triple (qk−1, C[xm], ⟨γ ;ψ⟩) with (C, ⟨γ ;ψ⟩) ∈ Iℓk Algorithm 4 guesses
in line 2 a linear term a · qn−ℓ − τ(u, q[ℓ+1,k]) in which all coefficients of q[ℓ,k] are divisible by µC .

Proof. Let us first observe that γ contains an inequality a · qn−ℓ ≥ 0 for some a ≥ 1, by definition
of Iℓk, and therefore terms(γ) contains −a · qn−ℓ. This implies that the guess performed in line 2 is
never on an empty set.

Let ρ := (a·qn−ℓ−τ) be the guessed term. By definition of Iℓk, γ is a linear program in variables u
and q[ℓ,k], and in which every inequality and equality is such that all the coefficients of the variables in
q[ℓ,k] are divisible by µC . The statement is thus true when ρ belongs to terms(γ ∧ γ[qn−ℓ + p / qn−ℓ]).

Suppose ρ to be instead computed using Algorithm 2. In this case there are b, d ∈ Z, and q′, q′′

from qk−1, such that ρ is obtained from b · u+ µC · (q′ − q′′) + d by simultaneously applying two
substitutions [τ

′

λ / µC · q
′] and [τ

′′

λ / µC · q
′′]. By definition of simultaneous substitution, ρ is thus

of the form (λ · b · u± τ ′ ∓ τ ′′ + λ · d), where the signs ± and ∓ depend on the sign of λ. Here,
λ := ηC

µC
, and the terms τ ′ and τ ′′ are computed as described in lines 4–7. From the definition of Iℓk,

recall that µC divides ηC , as well as all coefficients of the variables q[ℓ,k] occurring in linear terms
τn−i(u, q[ℓ,k]) featured in assignments qn−i ← τn−i

ηC
of C, with i ∈ [0..ℓ−1]. Looking at lines 4–7, it is

then easy to see that the terms τ ′ and τ ′′ are linear terms in variables u and q[ℓ,k], and that in these
terms the coefficients of q[ℓ,k] are all divisible by µC . Then, the same is true for the term ±τ ′ ∓ τ ′′,
and in turn also for ρ.

C.6 Proofs of the claims from Lemma 20 (Section 5)

The following claims refer to objects defined throughout the proof of Lemma 20.

Claim 9. Statement
in page 46

The ℓth rows of Mℓ and B′ℓ are equal. Moreover, ηℓ = ±a and α = ηℓ
µ = |λℓ| ≠ 0.

Proof. By induction hypothesis, the ℓth rows of Mℓ−1 and B′ℓ−1 are equal, and by Claim 8,
they contain the variable coefficients of a · qn−(ℓ−1) − τ . Following Bareiss algorithm (see line 02
and Lemma 15), the ℓth row of B′ℓ contains the variable coefficients of ±a · qn−(ℓ−1) − (±τ).

In the case of Mℓ, from its definition (Item (i)), the ℓth row contains the variable coefficients of
the term ηℓ · q − τ ′ such that q ← τ ′

ηℓ
is the first assignment in Cℓ. From line 1 and the last item in

line 7 of Algorithm 5, we conclude that this assignment is qn−(ℓ−1) ← ±τ
±a . Therefore, the ℓth rows

of Mℓ and B′ℓ are equal.

98

Appendix C.6: Proofs of the claims from Lemma 20 (Section 5)

Again from 7 of Algorithm 5, we see that in Cℓ all assignments to variables in qk have ±a
as a denominator, that is, ηℓ = ±a. Furthermore, from Lemma 17, the entry of B′ℓ in position
(ℓ, ℓ) is ±′µ · b(ℓ−1)ℓ,ℓ , where ±′ is the sign of λℓ = b

(ℓ−1)
ℓ,ℓ . By definition of Mℓ, the ℓth column

contains the coefficients of qn−(ℓ−1). This means that the entry of Mℓ in position (ℓ, ℓ) is ±a, and
therefore ±′µ · λℓ = ±a. It follows that α = ηℓ

µ = |λℓ| ≠ 0.

Claim 11. Statement
in page 46

Let i ∈ [j + 1..j + t]. The ith rows of Mℓ and B′ℓ are equal. Moreover, in all equalities
and inequalities γℓ−1[±τα / µ · qn−ℓ−1], all coefficients of the variables q[ℓ,k] are divisible by ηℓ−1, and
all coefficients of u are divisible by ηℓ−1

µ .

Proof. This proof is similar to the one of Claim 10. By definition, the ith rows of Mℓ−1 and Mℓ

contain the variable coefficients of the terms in the (in)equalities Λℓ−1(ρi−j ∼i−j 0) and Λℓ(ρi−j ∼i−j
0), respectively. By definition of Λℓ−1 and Λℓ, Λℓ(ρi−j ∼i−j 0) is the (in)equality obtained from
Λℓ(ρi−j ∼i−j 0) when running lines 3–6 of Algorithm 5. Below we analyze the updates performed
in these lines of the algorithm, and compare them to those Bareiss algorithm performs on the ith
row of B′ℓ−1 in order to produce B′ℓ.

Let us write β · µ · qn−(ℓ−1) + τ ′ for the term in the (in)equality Λℓ−1(ρi−j ∼i−j 0). Line 3
applies the substitution [±τα / µ · qn−(ℓ−1)] on this term, obtaining the term ±β · τ + α · τ ′. Then,
following lines 5 and 6, we see that the ith row of Mℓ holds the variable coefficients of the term
(±β · τ + α · τ ′)/ηℓ−1

µ obtained by dividing each integer in ±β · τ + α · τ ′ by ηℓ−1

µ . As in the proof
of Claim 10, we will see below that all variable coefficients of ±β · τ + α · τ ′ are divisible by ηℓ−1

µ .
Let us look at Bareiss algorithm. By induction hypothesis, the ith row of B′ℓ−1 contains the

variable coefficients of β · µ · qn−(ℓ−1) + τ ′. The algorithm first multiplies this row by α, and then
subtracts ±β · rℓ, where rℓ is the ℓth row of B′ℓ−1. By Claim 8, rℓ holds the variable coefficients
of a · qn−(ℓ−1) − τ . Hence, after this subtraction, the ith row of B′ℓ−1 is updated to contain the
variable coefficients of the term ±β · τ + α · τ ′. Lastly, each entry of the ith row is divided by
|λℓ−1| = ηℓ−1

µ . From Lemma 16, these divisions are exact. This means that every variable coefficient
in ±β · τ + α · τ ′ is divisible by ηℓ−1

µ ; so the divisions performed in lines 5 and 6 of Algorithm 5 are
also without remainder. The divisions performed by Bareiss algorithm completes the construction
of the ith row of Bℓ, which thus contain the variable coefficients of (±β · τ + α · τ ′)/ηℓ−1

µ . Hence,
the ith rows of Mℓ and B′ℓ coincide.

Let us discuss the second statement of the claim. Every (in)equality in γℓ−1[
±τ
α / µ · qn−ℓ−1] is

obtained by applying the substitution [±τα / µ · qn−ℓ−1] to an (in)equality Λℓ−1(ρi−j ∼i−j 0), with
i ∈ [j + 1..j + t]. Following the notation above, let ±β · τ + α · τ ′ be the term resulting from one
such substitution. We have already shown that all variable coefficients of this term are divisible
by ηℓ−1

µ . Then, the coefficient of u is divisible by ηℓ−1

µ . As for the remaining variables, Lemma 16
guarantee that, once divided by ηℓ−1

µ , their coefficients are still divisible by µ; hence before divisions
these coefficients are divisible by ηℓ−1.

Claim 12. Statement
in page 46

Let i ∈ [ℓ+ 1..j]. The ith rows of Mℓ and B′ℓ are equal.

Proof. By definition, the contents of the ith rows of Mℓ−1 and Mℓ depend on the type of the equality
ei−1. We divide the proof in two cases, depending on this type.

If ei−1 is of Type I, then by definition the ith rows of Mℓ−1 and Mℓ contain the variable
coefficients of the terms in the (in)equalities Λℓ−1(gi−1) and Λℓ(gi−1), respectively. Moreover, the
generator gi−1 of ei−1 is an (in)equality of γ0. Therefore, there is r ∈ [j+1..j+ t] such that the ith
and rth rows of Mℓ−1 (resp. Mℓ) are equal. Since Bareiss algorithm performs the same updates on
every row different from ℓ, the claim then follows from Claim 11.

99

Appendix C.7: Proof of Claim 6 from Section 5

Suppose now ei−1 to be of Type II. Let gi−1 := (ρ = 0) be the generator of ei−1. Recall that
ρ is of the form b · u+ µ · (q′ − q′′) + d, for some b, d ∈ Z and q′, q′′ from qk. By Item (iii) in the
definition of Mℓ, the ith row of Mℓ contains the coefficients of the variables qk and u from the term
obtained from ρ as follows:
1: multiply every integer in ρ by the quotient of the division of ηℓ by µ
2: for r in [1..ℓ] do ρ← ρ[τr / ηℓ · q], where q ← τr

ηℓ
is the rth assignment in Cℓ

Moreover, again by definition of Mℓ, the variable coefficients of the term ηℓ · q− τr corresponding to
the rth assignment in Cℓ is are stored in the rth row of Mℓ. By Claims 9 and 10, this row is equal to
the rth row of B′ℓ. Therefore, from Lemma 17, we conclude that q is the variable qn−(r−1), and that
τr is a linear term in variables u and q[ℓ,k]. Note that then, the terms τ1, . . . , τℓ do not feature any of
the variables qn−(ℓ−1), . . . , qn, which means that the code above is in fact simultaneously applying
the substitutions [τ1α / µ · qn], . . . , [

τℓ
α / µ · qn−(ℓ−1)] to ρ (by Claim 9, α = ηℓ

µ). We conclude that the
ith row of Mℓ holds the variable coefficients of

α · b · u+ τ ′ − τ ′′ + α · d, (41)

where τ ′ stands for ηℓ · q′ if Cℓ assigns no expression to q′, and otherwise it is the term such
that q′ ← τ ′

ηℓ
occurs in Cℓ; and similarly, τ ′′ stands for ηℓ · q′′ if Cℓ assigns no expression to q′, and

otherwise it is the term such that q′′ ← τ ′′

ηℓ
occurs in Cℓ.

Let us look at Bareiss algorithm. By Lemma 18, the ith row of B′ℓ can be computed as follows:

1: multiply the ith row of B′0 by |λℓ|
2: for r in [1..ℓ] do subtract bi,r · ur to the ith row of B′0, where ur is the rth row of B′ℓ

Above bi,r is the entry of B0 in position (i, r) —whereas the entry of B′0 in that position is µ · bi,r.
Also, by Claim 9, |λℓ| = α. Following Claims 9 and 10, the ith row of B′ℓ contains the variable
coefficients of the term

α · b · u+ ηℓ · (q′ − q′′) + α · d−
∑ℓ

r=1
bi,r · (ηℓ · qn−(r−1) − τr) (42)

Now, if q′ = q′′, then all entries bi,s of B0, where ranges in s ∈ [1..k+1], are zero, and so Equation (42)
simplifies to α ·b ·u+α ·d; which is equal to the term in Equation (41), since q′ = q′′ implies τ ′ = τ ′′.
If instead q′ ̸= q′′, then all entries bi,s of B0 (with s ∈ [1..k + 1]) are equal to zero, except for
the entry in the position corresponding to q′, which is equal to 1, and the entry in the position
corresponding to q′′, which is equal to −1. Equation (42) can be rewritten as

α · b · u+ ηℓ · (q′ − q′′) + α · d− ρ′ + ρ′′, (43)

where ρ′ := 0 if the column corresponding to q′ is not among the first ℓ, and otherwise ρ′ :=
(ηℓ · q′ − τ ′), with q′ ← τ ′

ηℓ
occurring in Cℓ; and similarly, ρ′′ := 0 if the column corresponding to

q′′ is not among the first ℓ, and otherwise ρ′′ := (ηℓ · q′′ − τ ′′), with q′′ ← τ ′′

ηℓ
occurring in Cℓ. The

terms in Equations (41) and (43) are thus equal, proving the claim.

C.7 Proof of Claim 6 from Section 5

Claim 6. The following property is true across all the executions of Algorithm 5 performed in all
non-deterministic branches of ElimVars, on any of its inputs. In all equalities and inequalities of
the formula γ[τα / µC · qn−ℓ] computed in line 3, and in terms τn−i[τα / µC · qn−ℓ] computed in line 7,
all coefficients of the variables q[ℓ+1,k] are divisible by ηC , and all coefficients of u are divisible by ηC

µC
.

100

Appendix C.8: Proof of Lemma 21 from Section 5

Proof. Following the explanation provided as the start of the induction step of the proof of Lemma 20,
this lemma implies that (Cℓ, ⟨γℓ ; ψ⟩) ∈ Iℓk for every ℓ ∈ [0..j]. In particular, this ensures that the
while loop of GaussQE iterates at most k times (possibly fewer, if an assert command in Al-
gorithm 5 fails). Consequently, by examining all truncations of the non-deterministic branches
in Equation (18) of length up to k, we have in fact accounted for all possible non-deterministic
executions of GaussQE. Then, the statement from Lemma 20 “if ℓ ≥ 1, then Claim 6 holds when
restricted to Algorithm 5 having as input (Cℓ−1[xm], ⟨γℓ−1 ; ψ⟩) and the equality eℓ−1” generalizes
to all inputs of Algorithm 5; that is, Claim 6 holds.

C.8 Proof of Lemma 21 from Section 5

Lemma 21. Statement
in page 47

The algorithm from Lemma 14 runs in non-deterministic polynomial time. Consider
its execution on an input (q, C[xm], ⟨γ ; ψ⟩), where (C, ⟨γ ; ψ⟩) belongs to I0k , and define:

L := 3 · µC · (4 · ⌈log2(2 · ξC + µC)⌉+ 8),

Q := max{|b| : b ∈ Z is a coefficient of qn−k or of a variable in q, in a term from terms(γ)},
U := max{|a| : a = L or a ∈ Z is a coefficient of u in a term from terms(γ)},
R := max{|d| : d = L or d ∈ Z is a constant of a term from terms(γ)}.

In each non-deterministic branch β, the algorithm returns a pair (C ′[xm], ⟨γ′ ; ψ⟩) such that:

1. γ′ features k constraints more than γ, they are all divisibility constraints.

2. The circuits C and C ′ assign the same expressions to xn−k, . . . , xn (in particular, µC = µC′).

3. In terms τ either from terms(γ′) or in assignments qn−i ← τ
ηC′

of C ′ (where i ∈ [0..k − 1]),

• the coefficient of the variable qn−k is µC · c, for some c ∈ Z with |c| ≤ (k+1)k+1
(Q
µC

)k+1;

• the absolute value of the coefficient of the variable u is bounded by (k + 1)k+1
(Q
µC

)k
U ;

• the absolute value of the constant is bounded by ((k+1)·Q)2(k+2)2

(µC)2k2
·mod(γ) ·R.

4. The positive integer mod(γ′) divides c ·mod(γ), for some positive integer c ≤ (k·Q)k
2

(µC)k(k−1) .

5. We have ηC′ = µC · g, for some positive integer g ≤ kk
(Q
µC

)k.
Proof. Let j ∈ [0..k]. Throughout the proof, we refer to the pair (Cj , γj) and the matrices Mj ,
B′j and B0 defined in Section 5.4. (Recall that Mj is encoding the coefficients that the variables
qk and u have in Cj and γj ; see Lemma 19.) We let µ := µC , and write ± for the sign of the
determinant λj := b

(j−1)
j,j (postulating λ0 := 1). We recall that, directly from the Leibniz formula

for determinants, one obtains |det(A)| ≤ dd ·
∏d
i=1 αi for any d × d integer matrix A in which the

entries of the ith column are bounded, in absolute value, by αi ∈ N. Let us start with a simple
observation on the entries of B0, which follows directly from the definition of this matrix:

Claim 21. For every i ∈ [1..j + t], |bi,k+2| ≤ U and, for every j ∈ [1..k + 1], |bi,j | ≤ Q
µ .

Next, we bound the coefficients of the variables qk and u occurring in Cj .

Claim 22. Let i ∈ [0..j − 1], and qn−i ← τn−i

ηj
be an assignment in Cj. In the term τn−i:

• The coefficients of the variables q[0,j−1] are zero.

101

Appendix C.8: Proof of Lemma 21 from Section 5

• Each coefficient of a variable in q[j,k] is µ · d, for some d ∈ Z such that |d| ≤ jj
(Q
µ

)j.
• The coefficient of the variable u is bounded, in absolute value, by jj

(Q
µ

)j−1
U .

Moreover, ηj = µ · g for some positive integer g ≤ jj
(Q
µ

)j.
Proof. For j = 0 the circuit C0 features no assignment to variables in qk, and thus the claim is
trivially true. Assume then j ≥ 1. Let qn−i ← τn−i

ηj
be an assignment in Cj . From the proof

of correctness of ElimVars (Lemma 14), Cj is a (k, j)-LEAC, and so the coefficients of the vari-
ables q[0,j−1] in the term τn−i are zero. By definition of Mj , the coefficients of the term ηj ·qn−i−τn−i
are found in the (i+1)th rows of Mj . By Lemma 20, they are also found in the (i+1)th row of B′j .

Given ℓ ∈ [j..k], let us first consider the coefficient of the variable qn−ℓ, which is located in
position (i + 1, ℓ + 1) of B′j . From Lemma 17.1, the entry of B′j at that position is ±µ · b(j)i+1←ℓ+1.

Since b(j)i+1←ℓ+1 is a determinant of a j × j sub-matrix of B0 not involving its (k + 2)th column,

from Claim 21 we obtain
∣∣∣b(j)i+1←ℓ+1

∣∣∣ ≤ jj(Qµ)
j . Similarly, ηj (i.e., the coefficient of qn−i) is located

in position (i+ 1, i+ 1) of B′j . Then, by Lemma 17.1, ηj = ±µ · b(j−1)j,j , and 0 ≤ ±b(j−1)j,j ≤ jj(Qµ)
j .

Lastly, we consider the coefficient of the variable u, which is located in position (i + 1, k + 2)

of B′j . From Lemma 17.2, the entry of B′j at that position is ±b(j)i+1←k+2. This j×j sub-determinant

of B0 involves the (k + 2)th column. By Claim 21,
∣∣∣b(j)i+1←k+2

∣∣∣ ≤ jj(Qµ)j−1U .

Claim 23. In every equality or inequality of the formula γj:

• The variables q[0,j−1] do not appear (their coefficients are zero).

• Each coefficient of a variable in q[j,k] is µ ·d, for some d ∈ Z such that |d| ≤ (j+1)j+1
(Q
µ

)j+1.

• The coefficient of the variable u is bounded, in absolute value, by (j + 1)j+1
(Q
µ

)j
U .

Proof. The proof is similar to the one of Claim 22, but we now appeal to Lemma 16 instead
of Lemma 17. By definition, the coefficients of the (in)equalities of γj are located in the last t rows
of Mj , or alternatively of B′j , by Lemma 20. Consider the ith row of B′j , with i ∈ [j + 1..j + t].

From Lemma 16.1, given r ∈ [1..k+1], the entry of the matrix B′j in position (i, r) is ±µ · b(j)i,r ; and

moreover b(j)i,r = 0 whenever r ≤ j. The first two statements of the claim then follow from the fact
that the first k + 1 columns of B′j contain coefficients of the variables qn, . . . , qn−k. In particular,

for the second statement, note that b(j)i,r is the determinant of a (j + 1)× (j + 1) sub-matrix of B0

not involving its (k + 2)th column. From Claim 21,
∣∣∣b(j)i,r ∣∣∣ ≤ (j + 1)j+1(Qµ)

j+1. The coefficient of
the variable u is located instead in positions (i, k + 2) of B′j . From Lemma 16.2, the entry in this

position is ±b(j)i,k+2. This (j + 1) × (j + 1) sub-determinant of B0 involves the (k + 2)th column.

From Claim 21, we have
∣∣∣b(j)i,k+2

∣∣∣ ≤ (j + 1)j+1(Qµ)
jU .

Next, we consider the divisibility constraints in γj . We recall that these of the form d | τ where
all integers in the term τ belong to [0..d− 1]. It thus suffices to give a bound on mod(ψk) in order
to bound all integers in these constraints.

Claim 24. mod(γj) divides c ·mod(γ) for some positive integer c ≤ (j·Q)j
2

µj(j−1) .

102

Appendix C.8: Proof of Lemma 21 from Section 5

Proof. For a given ℓ ∈ [1..j], we show that mod(γℓ) = µ ·
∣∣∣b(ℓ−1)ℓ,ℓ

∣∣∣ · mod(γℓ−1). The bound then

follows by recalling that
∣∣∣b(ℓ−1)ℓ,ℓ

∣∣∣ ≤ ℓℓ
(Q
µ

)ℓ. Remark the divisibility constraints are only updated in
line 3 of Algorithm 5. In this line, the substitution updates each divisibility constraint d | ρ into a
constraint of the form (|a| · d) | ρ′ (where a is the coefficient of qn−ℓ+1 in the equality a · qn−ℓ+1 = τ
returned by Algorithm 4). Line 3 also adds a divisibility constraint with divisor |a|. From Claim 8,
a is the value of the entry in position (ℓ, ℓ) of the matrix Mℓ−1. From Lemma 20 and Lemma 16.1,
|a| = µ ·

∣∣∣b(ℓ−1)ℓ,ℓ

∣∣∣. Therefore, mod(γℓ) = µ ·
∣∣∣b(ℓ−1)ℓ,ℓ

∣∣∣ ·mod(γℓ−1), as required.

Lastly, we bound all constants occurring in equalities and inequalities of γj , and in terms τ from
the assignments qn−i ← τn−i

ηj
occurring in Cj , with i ∈ [0..j − 1]. Observe that in γ and C, these

constants are bounded by R.

Claim 25. Each constant in terms from terms(γj) and in terms τ from assignments qn−i ← τ
ηj

in Cj (with i ∈ [0..j − 1]), is bounded, in absolute value, by (j + 1)2(j+2)2 · Q
2j(j+2)

µ2j2
·mod(γ) ·R.

Proof. For simplicity, let us write:

• Rℓ for the maximum, in absolute value, of all constants occurring in (in)equalities of γℓ as
well as in terms τ from assignments qn−i ← τ

γℓ
in Cℓ, with ℓ ∈ [0..j].

• Sℓ for the absolute value of the constant in the equality aℓ · qn−ℓ = τℓ returned by Algorithm 4
during the (ℓ+ 1)th iteration of ElimVars, with ℓ ∈ [0..j − 1].

• g for the positive integer µ · (j+1)j+1
(Q
µ

)j+1. By Claims 8, 22 and 23, this is an upper bound
to η0, . . . , ηj and to the absolute values of all the coefficients of variables qk, in all formulae
γ0, . . . , γj , all circuits C0, . . . , Cj , and all equalities a0 · qn = τ0, . . . , aj−1 · qn−(j−1) = τj−1.

• h for the positive integer (j·Q)j
2

µj(j−1) ·mod(γ). This is an upper bound to mod(γ0), . . . ,mod(γj).

We now bound Rℓ and Sℓ (first in terms of Rℓ−1 and Sℓ−1) by analyzing Algorithms 4 and 5.

bound on R0: The circuit C0 has no assignment on the variables qk−1, so R0 = 0 ≤ R.

bound on Rℓ for ℓ ≥ 1. We show that Rℓ ≤ g · (Rℓ−1 + Sℓ−1). Looking at Algorithm 5, we see
that after the substitution in line 3 takes place, the constants in the equalities and inequalities
in γ are bounded by g

µ(Rℓ−1 +Sℓ−1) (in particular, note that α from line 2 is bounded by g
µ).

Afterwards, lines 5 and 6 divide these constants by ηℓ−1

µ (line 6 takes the ceiling of this division).
By definition of Iℓ−1k , µ divides ηℓ−1. Hence, the constants appearing in the (in)equalities of γℓ
are bounded by

⌈
g

ηℓ−1
(Rℓ−1 + Sℓ−1)

⌉
≤ g · (Rℓ−1 + Sℓ−1). A similar analysis applies to the

constants in the terms τ from assignments qn−i ← τ
γℓ

in Cℓ, since the corresponding terms in
Cℓ−1 are updated in the same way as those in equalities of γℓ−1 (line 7).

bound on Sℓ for ℓ ≥ 0. We show that Sℓ ≤ 2 · Rℓ + g · (R + 3 · h). If in line 2 Algorithm 4
guesses a term from terms(γ ∧ γ[qn−ℓ + p / qn−ℓ]), then Sℓ ≤ Rℓ + g · h and we are done.
Otherwise, Algorithm 2 is invoked, which returns a term obtained by simultaneously applying
two substitutions ν1 and ν2 to a term of the form a ·u+µ ·(q′−q′′)+d, with a, d ∈ [−L..L] and
q′, q′′ variables in qk. As already discussed during the proof of Claim 8, the substitutions ν1
and ν2 are of the form [τλ / µ · q] where, q is among q′ and q′′, λ = ηℓ

µ , and the term τ is
(i) ηℓ · q, or (ii) ηℓ · q+ ηℓ · p with p := mod(qn−ℓ, γℓ), or (iii) such that q ← τ

ηℓ
occurs in Cℓ, or

103

Appendix C.9: Proof of Lemma 25 from Section 6

(iv) of the form τ ′[qn−ℓ + p / qn−ℓ] with q ← τ ′

ηℓ
occurring in Cℓ. Therefore, the constant of τ

is bounded by Rℓ+g ·h (where g ·h accounts for the constant in Case (ii) and for the increase
that the substitution [qn−ℓ + p / qn−ℓ] may cause). The constant of the term computed in
line 8 of Algorithm 2 is thus bounded, in absolute value, by 2 · (Rℓ + g · h) + ηℓ

µ · |d|. This
constant is then shifted by at most g · h in line 3 of Algorithm 4. Recall that |d| ≤ L ≤ R

and, from Lemma 20, ηℓ
µ =

∣∣∣b(ℓ−1)ℓ,ℓ

∣∣∣ ≤ g. We conclude that Sℓ ≤ 2 ·Rℓ + g · (R+ 3 · h).

By conjoining the above inequalities for Rℓ and Sℓ, we derive the following recurrence relation:

R0 ≤ R, Rℓ ≤ 3 · g ·Rℓ−1 + g2 · (R+ 3 · h) for ℓ ∈ [1..j].

A simple induction shows Rj ≤ (3 · g)jR+ (g2(R+ 3 · h)) ·
∑j−1

i=0 (3 · g)i. For j ≥ 1, we have:

Rj ≤ (3 · g)j + j · (3 · g)j−1g2(R+ 3 · h)
≤ (j + 1) · 3j+1gj+1h ·R Hwe have R+ 3 · h ≤ R · 3 · hI

≤ 3j+1µj+1(j + 1)(j+1)2+j2+1 · Q(j+1)2+j2

µ(j+1)2+j(j−1) ·mod(γ) ·R Hdef. of g and hI

≤ ((j + 1) ·Q)2(j+2)2

µ2j2
·mod(γ) ·R. Husing j ≥ 1I

Note that for j = 0 the last expression reduces to Q8mod(γ) ·R, which is an upper bound to R0.

Since we have let j range arbitrarily in [0..k], Claims 22–25 establish that, throughout its exe-
cution, ElimVars only constructs objects whose sizes polynomial in the sizes of C and γ. Since k
bounds the number of iterations of ElimVars along any non-deterministic branch, we conclude that
it runs in non-deterministic polynomial time. This completes the proof of the lemma: Items 1–2
follow from the fact that Algorithm 5 does not update ψ nor any of the expressions in C featuring
xn−k, . . . , xn, whereas Items 3–5 follow directly from Claims 22–25.

C.9 Proof of Lemma 25 from Section 6

Lemma 25. Statement
in page 62

Algorithm 6 runs in non-deterministic polynomial time. Consider its execution on an
integer linear-exponential program φ(x1, . . . , xn) with n ≥ 1. Let (φk, θk, Ck) the system, circuit,
and ordering obtained at the end of kth iteration of the while loop of line 5, in any non-deterministic
branch of the algorithm. Then, the following bounds hold (for every ℓ, s, a, c ≥ 1):

if



#lst(φ, θ) ≤ ℓ
#φ ≤ s
∥φ∥L ≤ a
∥φ∥1 ≤ c
mod(φ) | 1

then



#lst(φk, θk) ≤ ℓ+ 3 · k2

#φk ≤ s+ 3 · k3 + 2 · ℓ · k
∥φk∥L ≤ 3ka

∥φk∥1 ≤ 38(k+1)c

mod(φk) ≤ 32·k
8
a2·k

7

ξCk
≤ 38(k+2)8c8(k+2)7

µCk
≤ 3k

3
ak

2
.

Proof. The proof is by induction on k.

base case: k = 0. In this case, φ0 is equal to φ, and C0 is the empty 0-PreLEAC (hence, by
definition µC0 = 1 and ξC0 = 0). All bounds in the statement trivially follows.

104

Appendix C.9: Proof of Lemma 25 from Section 6

induction hypothesis: For k ≥ 0, the bounds in the statement hold for the kth loop iteration.

induction step: Given k ≥ 0, consider a triple (φk, θk, Ck) obtained at the end of the kth iteration
of the loop, and (φk+1, θk+1, Ck+1) be obtained by applying the body of the loop to (φk, θk, Ck).
We bound the parameters of φk+1 and Ck+1. For brevity, we write ξk and µk for ξCk

and µCk
,

respectively (and use similar notation for ξCk+1
and µCk+1

).

least significant terms of φk+1:

#lst(φk+1, θk+1) ≤ max(#lst(φk, θk), 1) + 2 · k + 3 Hby Lemma 24I

≤ (ℓ+ 3 · k2) + 2 · k + 3 Hby I.H.I

≤ ℓ+ 3 · (k + 1)2

In the following cases, for simplicity we assume that all parameters of φk and Ck are greater
than or equal to 1. This assumption is made solely to avoid repeatedly writing expressions
involving max(·, 1), as we did earlier for #lst(φk, θk).

number of constraints in φk+1:

#φk+1 ≤ #φk + 6 · k + 2 ·#lst(φk, θk) + 3 Hby Lemma 24I

≤ (s+ 3 · k3 + 2 · ℓ · k) + 6 · k + 2 · (ℓ+ 3 · k2) + 3 Hby I.H.I

≤ s+ 3 · (k + 1)3 + 2 · ℓ · (k + 1).

linear norm of φk+1:

∥φk+1∥L ≤ 3 · ∥φk∥L Hby Lemma 24I

≤ 3k+1a. Hby I.H.I

denominator µk+1:

µk+1 ≤ µk(3 · k · ∥φk∥L)k Hby Lemma 24I

≤ 3k
3
ak

2(
3 · k · (3ka)

)k Hby I.H.I

≤ 3(k+1)3a(k+1)2 .

modulus of φk+1: Below, (φ0, C0), . . . , (φk−1, Ck−1) denote the formulae and PreLEACs
constructed by the algorithm during the first k− 1 iterations of the while loop; (φk, Ck)
are obtained from (φk−1, Ck−1) by performing a further iteration. In particular, φ0 is
the linear-exponential program given as input to OptILEP, and C0 is the empty 0-
PreLEAC. By Lemma 24, for every i ∈ [0..k], there is αi+1 ∈ [1..(3 · i · µi · ∥φi∥L)i

2
]

such that mod(φi+1) is a divisor of lcm(mod(φi), ϕ(αi+1 ·mod(φi))). Let us define α∗ :=
lcm(α1, α2, . . . , αk+1), and consider the integers c0, . . . , ck+1 given by{

c0 := 1

ci+1 := lcm(ci, ϕ(α
∗ · ci)) for i ∈ [0..k]

Claim 26. For every j ∈ [0..k + 1], mod(φj) divides cj.

105

Appendix C.9: Proof of Lemma 25 from Section 6

Proof. The proof is by induction on j.

base case: j = 0. We have mod(φ0) = 1 = c0.
induction step: Assume that the claim holds for j ∈ [0..k]. Then,

mod(φj+1) := lcm(mod(φj), ϕ(αj+1 ·mod(φj)))
| lcm(cj , ϕ(αj+1 ·mod(φj))) Hby I.H., mod(φi) | ciI
| lcm(cj , ϕ(α

∗ · cj)) Hq | r implies ϕ(q) | ϕ(r)I
= cj+1.

Given Claim 26, in order to bound mod(φk+1) it suffices to bound ck+1. The next lemma
from [CMS24] will help us analyze this integer.

Lemma 26 [CMS24, Lemma 7]. Let α ≥ 1 be in N. Let b0, b1, . . . be the integer sequence
given by the recurrence b0 := 1 and bi+1 := lcm(bi, ϕ(α · bi)). For every i ∈ N, bi ≤ α2·i2.

First, observe that

α∗ ≤
∏k

i=0
(3 · i · µi · ∥φi∥L)i

2

≤ (3 · k · (3k3ak2) · (3ka))k2(k+1) Hby I.H.I

≤ 3(k+1)6a(k+1)5 .

Then, ck+1 is bounded as follows:

ck+1 ≤ (α∗)2(k+1)2 Hby Lemma 26I

≤ 32(k+1)8a2(k+1)7 .

Note that in Lemma 24 the 1-norm of φ′ and the parameter ξC′ are bounded in terms of
a relatively complex quantity denoted as β. To simplify the upcoming calculations, we first
derive a more manageable upper bound for β, with respect to φk+1 and Ck+1. We start by
simplifying the subexpression log(ξk + µk):

log(ξk + µk) ≤ log(38(k+2)8c8(k+2)7 + 3k
3
ak

2
) Hby I.H.I

≤ 1 + log
(
38(k+2)8c8(k+2)7

)
Has a ≤ cI

≤ 17 · (k + 2)8c.

The quantity β can then be simplified as follows:

β := mod(φk)
(
27(k + 1) · µk ·max(∥φk∥1, log(ξk + µk))

)3(k+2)2

≤ 32·k
8
a2·k

7(
27(k + 1) · 3k3ak2 max(38(k+1)c, log(ξk + µk))

)3(k+2)2 Hby I.HI

≤ 32·k
8
a2·k

7(
27(k + 1) · 3k3ak238(k+1)c

)3(k+2)2 Has 38(k+1) ≥ 17 · (k + 2)8I

≤ 32·k
8+3·(k+2)2(k3+9k+13)c2·k

7+3(k+2)2(k2+1) Has a ≤ cI

≤ 32(k+2)8c2(k+2)7 .

106

Appendix D: Proofs of statements from Part II

1-norm of φk+1:

∥φk+1∥1 ≤ 12 + 4 ·max (∥φk∥1, log β) Hby Lemma 24I

≤ 12 + 4 ·max(38(k+1)c, log β) Hby I.H.I

≤ 12 + 4 ·max(38(k+1)c, 4 · (k + 2)8c) Hfrom bound on βI

≤ 12 + 4 · 38(k+1)c ≤ 38·(k+2)c.

parameter ξk+1:

ξk+1 ≤ ξk · (3 · k · ∥φk∥L)k + 26(k + 1) · β4 Hby Lemma 24I

≤ (38(k+2)8c8(k+2)7) · (3 · k · (3ka))k + 26(k + 1) · (32(k+2)8c2(k+2)7)4 Hby I.H.I

≤ 38(k+2)8c8(k+2)7((3k+1k · c)k + 26(k + 1)) Ha ≤ cI

≤ 38(k+2)8c8(k+2)7(ck32k
2+k+5) ≤ 38(k+3)8c8(k+3)7 .

Given the bounds we have just established, it is simple to see that OptILEP runs in non-deterministic
polynomial time. Indeed, these bounds ensure that, each time the execution reaches line 5, both
the formula φ and circuit C manipulated by the algorithm are of size polynomial in the input. The
while loop of line 5 iterates n times, and by Lemma 24 each iteration runs in non-deterministic
polynomial time. It follows that OptILEP runs in non-deterministic polynomial time.

D Proofs of statements from Part II

Lemma 27. Statement
in page 64

Consider an ILESLP σ := (x0 ← ρ0, . . . , xn ← ρn) and let i ∈ [0..n]. One can
compute, in time polynomial in the size of σ, an expression Ei of the form

∑i−1
j=0 ai,j · 2xj such that

JσK (Ei) = d(σ) · JσK (xi). For every j ∈ [0..i− 1], the coefficient ai,j is (i) an integer whose absolute
value is bounded by 2i · e(σ) · d(σ), and (ii) non-zero only if JσK (xj) ≥ 0.

Proof. Given i ∈ [0..n], let σi denote the ILESLP (x0 ← ρ0, . . . , xi ← ρi) obtained by truncating σ
after i+ 1 assignments. We remark that d(σi) divides d(σj) for every i ≤ j.

We show by induction on i how to compute a vector of rational numbers bi = (bi,0, . . . , bi,i−1) ∈
Qi satisfying JσK (xi) =

∑i−1
j=0 bi,j · 2JσK(xj). Moreover, each bi,j is of the form m

d(σi)
for some m ∈ Z

satisfying |m| ≤ 2i · e(σi) · d(σi), and m ̸= 0 only if JσK (xj) ≥ 0. With this result at hand, the
expression Ei in the statement of the lemma is computed by multiplying all these rational numbers
by d(σ) to make them integers. In particular, if bi,j = m

d(σi)
, then in Ei the coefficient of 2xj is

ai,j := m · d(σ)d(σi)
. We then conclude that |ai,j | ≤ 2i · e(σi) ·d(σi) · d(σ)d(σi)

≤ 2i · e(σ) ·d(σ). Note that the
bit size of each ai,j is thus polynomial in the size of σ. With this in mind, the fact that the whole
computation can be performed in polynomial time will be immediate from the inductive proof.

base case: i = 0. In this case we simply have ρ0 = 0, and we take b0 to be empty vector.

induction hypothesis. We have computed the vector bj ∈ Qj , for every j ∈ [0..i − 1]. Given
k ∈ [0..j − 1], the kth entry of bj is a rational of the form m

d(σj)
, for some m ∈ Z satisfying

|m| ≤ 2j · e(σj) · d(σj), and m ̸= 0 only if JσK (xk) ≥ 0.

induction step: i ≥ 1. We reason by cases, depending on ρi.

case: ρi = 0. We define bi to be the zero vector of length i (encoded as the rational 0
d(σi)

).

107

Appendix D: Proofs of statements from Part II

case: ρi = 2xj . We define bi by setting bi,j =
d(σi)
d(σi)

, and bi,ℓ = 0 for all ℓ ̸= j. Since σ is an
ILESLP, we must have JσK (xi) ∈ Z. Therefore, JσK (xj) ≥ 0; which allows us to set a
non-zero value to bi,j .

case: ρi = xj + xk. Following the induction hypothesis, consider the already computed vec-
tors bj = (bj,0, . . . , bj,j−1) and bk = (bk,0, . . . , bk,k−1). Let the vectors (bj,0, . . . , bj,i−1)
and (bk,0, . . . , bk,i−1) be obtained from bj and bk by appending a suitable amount of 0s
(encoded as 0

d(σj)
and 0

d(σk)
, respectively). The vector bi is defined as follows: for every

ℓ ∈ [0..i−1], if bj,ℓ = m
d(σj)

and bk,ℓ = r
d(σk)

, then we define bi,ℓ :=
m· d(σi)

d(σj)
+r· d(σi)

d(σk)

d(σi)
. Clearly,

bi,ℓ = bj,ℓ+ bk,ℓ, and the numerator of bi,ℓ is an integer (because d(σi) is divided by both
d(σj) and d(σk)). For the numerator, we have:∣∣∣∣m · d(σi)d(σj)

+ r · d(σi)
d(σk)

∣∣∣∣
≤

∣∣∣∣m · d(σi)d(σj)

∣∣∣∣+ ∣∣∣∣r · d(σi)d(σk)

∣∣∣∣
≤ 2j · e(σj) · d(σj) ·

d(σi)

d(σj)
+ 2k · e(σk) · d(σk) ·

d(σi)

d(σk)
Hby induction hypothesisI

≤ 2 · 2i−1 · e(σi−1) · d(σi)
≤ 2i · e(σi) · d(σi).

Lastly, observe that for a variable x among x0, . . . , xi−1 satisfying JσK (x) < 0, (the nu-
merators of) both corresponding rationals in bj and bk are zero (by induction hypothesis).
Therefore, the same holds for bi.

case: ρi = m
g · xj. Similarly to the previous case, consider the vector (bj,0, . . . , bj,i−1) obtained

from bj by appending 0s. The vector bi is defined as follows: for every ℓ ∈ [0..i − 1], if

bj,ℓ =
r

d(σj)
then we define bi,ℓ :=

m·r· d(σi−1)

d(σj)

d(σi)
. Note that, by definition, d(σi) = g · d(σi−1)

and bj,ℓ =
r· d(σi−1)

d(σj)

d(σi−1)
; and thus bi,ℓ = m

g · bi,ℓ. The numerator is bounded as follows:∣∣∣∣m · r · d(σi−1)d(σj)

∣∣∣∣ ≤ 2j · e(σj) · d(σj) · |m| ·
d(σi−1)

d(σj)
Hby induction hypothesisI

≤ 2j · e(σi) · d(σi−1) Hbecause e(σj) · |m| ≤ e(σi)I
≤ 2i · e(σi) · d(σi).

Lastly, note that if a variable x among x0, . . . , xi−1 satisfies JσK (x) < 0, then the corre-
sponding rational in bj is zero (by induction hypothesis), and so the same holds for bj .

108

References

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. Math.,
2004. doi: 10.4007/annals.2004.160.781.

[AMC+99] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gambosi,
Marco Protasi, and Viggo Kann. Complexity and approximation: combinatorial opti-
mization problems and their approximability properties. 1999. doi: 10.1007/978-3-642-
58412-1.

[Bar68] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Math. Comput., 1968. doi: 10.1090/S0025-5718-1968-0226829-0.

[BBS86] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM J. Comput., 1986. doi: 10.1137/0215025.

[BDJ24] Markus Bläser, Julian Dörfler, and Gorav Jindal. PosSLP and sum of squares. 2024.
doi: 10.4230/LIPIcs.FSTTCS.2024.13.

[BGW17] Tristram Bogart, John Goodrick, and Kevin Woods. Parametric Presburger arithmetic:
logic, combinatorics, and quasi-polynomial behavior. Discrete Analysis, 2017. doi:
10.19086/da.1254.

[BH24] Eion Blanchard and Philipp Hieronymi. Decidability bounds for Presburger arithmetic
extended by sine. Ann. Pure Appl. Log., 2024. doi: 10.1016/j.apal.2024.103487.

[BJ24] Peter Bürgisser and Gorav Jindal. On the hardness of PosSLP. In SODA, 2024. doi:
10.1137/1.9781611977912.75.

[BT76] Itshak Borosh and Leon B. Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proc. Am. Math. Soc., 1976. doi: 10.2307/2041711.

[BT18] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of
Model Checking. 2018. doi: 10.1007/978-3-319-10575-8_11.

[BW08] David M. Bressoud and S. Wagon. A course in computational number theory. Wiley &
Sons, 2008. isbn: 978-0-470-41215-2.

[CJSS21] Peter Chvojka, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Versatile and
sustainable timed-release encryption and sequential time-lock puzzles (extended ab-
stract). In ESORICS, 2021. doi: 10.1007/978-3-030-88428-4_4.

[CMS24] Dmitry Chistikov, Alessio Mansutti, and Mikhail R. Starchak. Integer linear-
exponential programming in NP by quantifier elimination. In ICALP, 2024. doi:
10.4230/LIPICS.ICALP.2024.132. See arXiv:2407.07083 for a full version.

[CP89] Pierluigi Crescenzi and Alessandro Panconesi. Completeness in approximation classes.
In FCT, 1989. doi: 10.1007/3-540-51498-8_11.

[DHM24] Andrei Draghici, Christoph Haase, and Florin Manea. Semënov arithmetic, affine VASS,
and string constraints. In STACS, 2024. doi: 10.4230/LIPICS.STACS.2024.29.

109

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1090/S0025-5718-1968-0226829-0
https://doi.org/10.1137/0215025
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13
https://doi.org/10.19086/da.1254
https://doi.org/10.1016/j.apal.2024.103487
https://doi.org/10.1137/1.9781611977912.75
https://doi.org/10.2307/2041711
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-88428-4_4
https://doi.org/10.4230/LIPICS.ICALP.2024.132
https://arxiv.org/abs/2407.07083
https://doi.org/10.1007/3-540-51498-8_11
https://doi.org/10.4230/LIPICS.STACS.2024.29

[DHMP24] Rémy Défossez, Christoph Haase, Alessio Mansutti, and Guillermo A.
Pérez. Integer programming with GCD constraints. In SODA, 2024. doi:
10.1137/1.9781611977912.128.

[EGKO19] Eduard Eiben, Robert Ganian, Dusan Knop, and Sebastian Ordyniak. Solving integer
quadratic programming via explicit and structural restrictions. In AAAI, 2019. doi:
10.1609/aaai.v33i01.33011477.

[FG24] Florian Frohn and Jürgen Giesl. Satisfiability modulo exponential integer arithmetic.
In IJCAR, 2024. doi: 10.1007/978-3-031-63498-7_21.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. 2008. doi:
10.1017/CBO9780511804106.

[HK71] Kenneth Hoffman and Ray Kunze. Linear Algebra. 1971. isbn: 978-0135367971.

[JLN+10] Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors. 50
Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art.
2010. doi: 10.1007/978-3-540-68279-0.

[KBT14] Tim King, Clark W. Barrett, and Cesare Tinelli. Leveraging linear and mixed integer
programming for SMT. In FMCAD, 2014. doi: 10.1109/FMCAD.2014.6987606.

[KLN+25] Toghrul Karimov, Florian Luca, Joris Nieuwveld, Joël Ouaknine, and James Worrell.
On the decidability of Presburger arithmetic expanded with powers. In SODA, 2025.
doi: 10.1137/1.9781611978322.89.

[Kre88] Mark W. Krentel. The complexity of optimization problems. J. Comput. Syst. Sci.,
1988. doi: 10.1016/0022-0000(88)90039-6.

[Len83] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables.
Math. Oper. Res., 1983. doi: 10.1287/moor.8.4.538.

[Lib03] Leonid Libkin. Variable independence for first-order definable constraints. ACM Trans.
Comput. Log., 4(4):431–451, 2003. doi: 10.1145/937555.937557.

[Lok15] Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and co-
efficients. CoRR, 2015. url: arxiv.org/abs/1511.00310.

[MUW11] Alexei Myasnikov, Alexander Ushakov, and Dong Wook Won. The word problem in the
Baumslag group with a non-elementary Dehn function is polynomial time decidable. J.
Algebra, 2011. doi: 10.1016/j.jalgebra.2011.07.024.

[MUW12] Alexei G. Myasnikov, Alexander Ushakov, and Dong Wook Won. Power circuits,
exponential algebra, and time complexity. Int. J. Algebra Comput., 2012. doi:
10.1142/S0218196712500476.

[Nel08] David Nelson. The Penguin Dictionary of Mathematics: Fourth edition. 2008. isbn:
978-0-141-92087-0.

[PDM17] Alberto Del Pia, Santanu S. Dey, and Marco Molinaro. Mixed-integer quadratic pro-
gramming is in NP. Math. Program., 2017. doi: 10.1007/s10107-016-1036-0.

110

https://doi.org/10.1137/1.9781611977912.128
https://doi.org/10.1609/aaai.v33i01.33011477
https://doi.org/10.1007/978-3-031-63498-7_21
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1007/978-3-540-68279-0
https://doi.org/10.1109/FMCAD.2014.6987606
https://doi.org/10.1137/1.9781611978322.89
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1145/937555.937557
http://arxiv.org/abs/1511.00310
https://doi.org/10.1016/j.jalgebra.2011.07.024
https://doi.org/10.1142/S0218196712500476
https://doi.org/10.1007/s10107-016-1036-0

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes
Rendus du I Congrès des Mathématiciens des Pays Slaves, pages 92–101. 1929.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, 1996.

[Sem84] Aleksei L. Semenov. Logical theories of one-place functions on the set of natural num-
bers. Math. USSR Izv., 1984. doi: 10.1070/im1984v022n03abeh001456.

[She18] Bobby Shen. Parametrizing an integer linear program by an integer. SIAM J. Discret.
Math., 2018. doi: 10.1137/16M1102458.

[Smo91] Craig Smoryński. Logical Number Theory I: An Introduction. 1991. doi: 10.1007/978-
3-642-75462-3.

[Sta25] Mikhail R. Starchak. Quantifier elimination for regular integer linear-exponential pro-
gramming. In LICS, 2025. To appear.

[vzGS78] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equalities and inequalities. Proc. Am. Math. Soc., 1978. doi: 10.1090/S0002-9939-1978-
0500555-0.

[WCW+23] Hao Wu, Yu-Fang Chen, Zhilin Wu, Bican Xia, and Naijun Zhan. A decision procedure
for string constraints with string-integer conversion and flat regular constraints. Acta
Inform., 2023. doi: 10.1007/s00236-023-00446-4.

[Wei90] Volker Weispfenning. The complexity of almost linear Diophantine problems. J. Symb.
Comput., 1990. doi: 10.1016/S0747-7171(08)80051-X.

111

https://doi.org/10.1070/im1984v022n03abeh001456
https://doi.org/10.1137/16M1102458
https://doi.org/10.1007/978-3-642-75462-3
https://doi.org/10.1007/978-3-642-75462-3
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1007/s00236-023-00446-4
https://doi.org/10.1016/S0747-7171(08)80051-X

	Introduction
	Succinct encoding of optimal solutions
	Recognizing ILESLPs and when they encode solutions
	Comparing values of the objective function without computing them
	Overview of the proof of Theorem 1
	Open problems and future directions
	ILEP in context

	I Polynomial-size ILESLPs for optimal solutions
	The algorithm for deciding ILEP feasibility, briefly
	Exploring optimal solutions through monotone decompositions
	Monotone decompositions for ILEP
	An efficient variable elimination that preserves optimal solutions
	Proof of Theorem 1

	II Deciding properties of ILESLPs
	Deciding NatILESLP in polynomial time
	Deciding ModILESLP in P^Factoring
	Computing an ILESLP representing x mod 2^y

	III On the complexity of ILEP
	The complexity class NPO-cmp
	ILEP is in NPO-cmp

	IV Appendices
	The Sequential Squaring Assumption and ILESLPs
	The algorithm for deciding ILEP: Further information on Steps I and III
	Proofs of statements from Part I
	Proofs of statements from Part II

